Analytic solutions of the (2+1)-dimensional nonlinear evolution equations using the sine-cosine method

被引:55
作者
Tascan, Filiz [2 ]
Bekir, Ahmet [1 ]
机构
[1] Dumlupinar Univ, Art Sci Fac, Dept Math, Kutahya, Turkey
[2] Eskisehir Osmangazi Univ, Art Sci Fac, Dept Math, Eskisehir, Turkey
关键词
Exact solutions; Solitons; Sine-cosine method; (2+1)-Dimensional Boussinesq equation; (2+1)-Dimensional breaking soliton equations; (2+1)-Dimensional BKP equations; MULTIPLE-SOLITON-SOLUTIONS; TRAVELING-WAVE SOLUTIONS; EXP-FUNCTION METHOD; HOMOGENEOUS BALANCE METHOD; EXTENDED TANH METHOD; BOUSSINESQ EQUATION; PERIODIC-SOLUTIONS; KP EQUATION;
D O I
10.1016/j.amc.2009.09.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish exact solutions for (2 + 1)-dimensional nonlinear evolution equations. The sine-cosine method is used to construct exact periodic and soliton solutions of (2 + 1)-dimensional nonlinear evolution equations. Many new families of exact traveling wave solutions of the (2 + 1)-dimensional Boussinesq, breaking soliton and BKP equations are successfully obtained. These solutions may be important of significance for the explanation of some practical physical problems. It is shown that the sine-cosine method provides a powerful mathematical tool for solving a great many nonlinear partial differential equations in mathematical physics. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3134 / 3139
页数:6
相关论文
共 34 条
[1]  
Ablowitz M J., 1990, Solitons, Nonlinear Evolution Equations and Inverse Scattering Transform
[2]   New double periodic and multiple soliton solutions of the generalized (2+1)-dimensional Boussinesq equation [J].
Chen, HT ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2004, 20 (04) :765-769
[3]  
Chen Y, 2003, COMMUN THEOR PHYS, V40, P137
[4]   New explicit solitary wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation [J].
Chen, Y ;
Yan, ZY ;
Zhang, H .
PHYSICS LETTERS A, 2003, 307 (2-3) :107-113
[5]   TRANSFORMATION GROUPS FOR SOLITON-EQUATIONS .4. A NEW HIERARCHY OF SOLITON-EQUATIONS OF KP-TYPE [J].
DATE, E ;
JIMBO, M ;
KASHIWARA, M ;
MIWA, T .
PHYSICA D, 1982, 4 (03) :343-365
[6]   Two new applications of the homogeneous balance method [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 265 (5-6) :353-357
[7]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[8]   Bifurcations of travelling wave solutions for (2+1)-dimensional Boussinesq-type equation [J].
Feng, Dahe ;
He, Tianlan ;
Lu, Junliang .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) :402-414
[9]   Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method [J].
He, Ji-Huan ;
Zhang, Li-Na .
PHYSICS LETTERS A, 2008, 372 (07) :1044-1047
[10]   New periodic solutions for nonlinear evolution equations using Exp-function method [J].
He, Ji-Huan ;
Abdou, M. A. .
CHAOS SOLITONS & FRACTALS, 2007, 34 (05) :1421-1429