Hp-theory for Quasiconformal Mappings

被引:2
作者
Astala, Kari [1 ]
Koskela, Pekka [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[2] Univ Jyvaskyla, Dept Math & Stat, FIN-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
quasiconformal mapping; H-p-space; BOUNDED MEAN OSCILLATION; ANALYTIC-FUNCTIONS; HARDY-LITTLEWOOD; INEQUALITY; DOMAINS; SPACES; DISTORTION; ANALOGS; SIZE; NORM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop an H-p-theory for quasiconformal mappings in space.
引用
收藏
页码:19 / 50
页数:32
相关论文
共 39 条
[1]  
[Anonymous], 1971, LECT NOTES MATH
[2]  
[Anonymous], NONLINEAR POTENTIAL
[3]   INJECTIVITY, THE BMO NORM AND THE UNIVERSAL TEICHMULLER SPACE [J].
ASTALA, K ;
GEHRING, FW .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 46 :16-57
[4]  
ASTALA K, 1985, MICH MATH J, V32, P99
[5]  
ASTALA K, 1987, U JOENSUU PUBL SCI, V14
[6]  
BAERNSTEIN A, 1976, MICH MATH J, V23, P217
[7]   Conformal metrics and size of the boundary [J].
Bonk, M ;
Koskela, P .
AMERICAN JOURNAL OF MATHEMATICS, 2002, 124 (06) :1247-1287
[8]   SOBOLEV-POINCARE INEQUALITIES FOR P-LESS-THAN-1 [J].
BUCKLEY, SM ;
KOSKELA, P .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1994, 43 (01) :221-240
[9]   MAXIMAL FUNCTION CHARACTERIZATION OF CLASS HP [J].
BURKHOLDER, DL ;
GUNDY, RF ;
SILVERSTEIN, ML .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 157 (JUN) :137-+
[10]   ANALYTIC-FUNCTIONS WITH BOUNDED MEAN OSCILLATION AND LOGARITHMS OF HP FUNCTIONS [J].
CIMA, JA ;
SCHOBER, G .
MATHEMATISCHE ZEITSCHRIFT, 1976, 151 (03) :295-300