Existence of periodic orbits for high-dimensional autonomous systems

被引:22
作者
Sanchez, Luis A. [1 ]
机构
[1] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Escuela Univ Ingn Tecn Civil, Murcia 30203, Spain
关键词
Periodic orbits; Poincare-Bendixson property; Autonomous systems;
D O I
10.1016/j.jmaa.2009.08.058
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a result on existence of periodic orbits for autonomous differential systems with arbitrary finite dimension. It is based on a Poincare-Bendixson property enjoyed by a new class of monotone systems introduced in [L.A. Sanchez, Cones of rank 2 and the Poincare-Bendixson property for a new class of monotone systems, J. Differential Equations 216 (2009) 1170-1190]. A concrete application is done to a scalar differential equation of order 4. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:409 / 418
页数:10
相关论文
共 18 条
[1]   PERSISTENCE IN DYNAMIC-SYSTEMS [J].
BUTLER, G ;
WALTMAN, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 63 (02) :255-263
[2]  
Chicone C, 1999, texts in applied mathematics, V34
[3]   A generalization of Bendixson's criterion [J].
Feckan, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (11) :3395-3399
[5]  
FECKAN M, 2000, NONLINEAR OSCIL N Y, V3, P271
[6]   A PERRON THEOREM FOR THE EXISTENCE OF INVARIANT SUBSPACES [J].
FUSCO, G ;
OLIVA, WM .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 160 :63-76
[7]  
Hartman P., 1980, ORDINARY DIFFERENTIA
[8]  
Hirsch MW, 2005, HBK DIFF EQUAT ORDIN, V2, P239
[9]  
Krasnoselskij MA., 1989, Positive linear systems: the method of positive operators
[10]  
Krasnoselskij MA, 1984, GEOMETRICAL METHODS