Refractive index tomography with structured illumination

被引:69
作者
Chowdhury, Shwetadwip [1 ]
Eldridge, Will J. [1 ]
Wax, Adam [1 ]
Izatt, Joseph [1 ]
机构
[1] Fitzpatrick Inst Photon, Dept Biomed Engn, 1427 FCIEMAS,101 Sci Dr Box 90281, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
OPTICAL DIFFRACTION TOMOGRAPHY; DIGITAL HOLOGRAPHIC MICROSCOPY; PHASE MICROSCOPY; LIVE CELLS; RESOLUTION; NUCLEUS; BORN;
D O I
10.1364/OPTICA.4.000537
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To probe biological questions with significant biophysical, biochemical, and molecular components, an imaging solution compatible with both endogenous and molecular 3D imaging may be necessary. In this work, we show that structured illumination (SI) microscopy, popularly associated with 3D fluorescent super-resolution, can allow 3D refractive index (RI) reconstructions when operated in the coherent realm. We introduce a novel reinterpretation of coherent SI, which mathematically equates it to a superposition of angled illuminations. Raw acquisitions for standard SI-enhanced quantitative-phase images can be processed into electric field maps of the sample under angled illuminations. Standard diffraction tomography (DT) computation can then be used to reconstruct the sample's 3D RI distribution at sub-diffraction resolutions. We demonstrate this concept by using SI to computationally reconstruct 3D RI distributions of human breast (MCF-7) and colorectal (HT-29) adenocarcinoma cells. Our experimental setup generates SI patterns using broadband illumination with a spatial light modulator and detects angledependent sample diffraction through a common-path, off-axis interferometer with no moving components. This technique may easily pair with SI fluorescence microscopy and important future extensions may include multimodal, sub-diffraction resolution, 3D RI, and fluorescent visualizations. (C) 2017 Optical Society of America
引用
收藏
页码:537 / 545
页数:9
相关论文
共 40 条
[31]   Nanotubular highways for intercellular organelle transport [J].
Rustom, A ;
Saffrich, R ;
Markovic, I ;
Walther, P ;
Gerdes, HH .
SCIENCE, 2004, 303 (5660) :1007-1010
[32]   The development of fluorescence turn-on probe for Al(III) sensing and live cell nucleus-nucleoli staining [J].
Saini, Anoop Kumar ;
Sharma, Vinay ;
Mathur, Pradeep ;
Shaikh, Mobin M. .
SCIENTIFIC REPORTS, 2016, 6
[33]  
Saleh B. E., 1991, Fundamentals of Photonics, V22
[34]   Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy [J].
Schermelleh, Lothar ;
Carlton, Peter M. ;
Haase, Sebastian ;
Shao, Lin ;
Winoto, Lukman ;
Kner, Peter ;
Burke, Brian ;
Cardoso, M. Cristina ;
Agard, David A. ;
Gustafsson, Mats G. L. ;
Leonhardt, Heinrich ;
Sedat, John W. .
SCIENCE, 2008, 320 (5881) :1332-1336
[35]   Dispersion Properties of Optical Polymers [J].
Sultanova, N. ;
Kasarova, S. ;
Nikolov, I. .
ACTA PHYSICA POLONICA A, 2009, 116 (04) :585-587
[36]   Optical diffraction tomography for high resolution live cell imaging [J].
Sung, Yongjin ;
Choi, Wonshik ;
Fang-Yen, Christopher ;
Badizadegan, Kamran ;
Dasari, Ramachandra R. ;
Feld, Michael S. .
OPTICS EXPRESS, 2009, 17 (01) :266-277
[37]   The elusive sizer [J].
Umen, JG .
CURRENT OPINION IN CELL BIOLOGY, 2005, 17 (04) :435-441
[38]   EXPERIMENTAL EXAMINATION OF THE QUANTITATIVE IMAGING PROPERTIES OF OPTICAL DIFFRACTION TOMOGRAPHY [J].
WEDBERG, TC ;
STAMNES, JJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1995, 12 (03) :493-500
[39]  
Wolf E., 1969, Optics Communications, V1, P153, DOI 10.1016/0030-4018(69)90052-2
[40]  
Zheng GA, 2013, NAT PHOTONICS, V7, P739, DOI [10.1038/nphoton.2013.187, 10.1038/NPHOTON.2013.187]