Influence of copper and potassium on the structure and carbidisation of supported iron catalysts for Fischer-Tropsch synthesis

被引:57
作者
Chernavskii, Petr A. [1 ]
Kazak, Vladislav O. [1 ]
Pankina, Galina V. [1 ]
Perfiliev, Yurii D. [1 ]
Li, Tong [2 ]
Virginie, Mirella [2 ]
Khodakov, Andrei Y. [2 ]
机构
[1] Lomonosov Moscow State Univ, Dept Chem, Moscow, Russia
[2] Univ Lille, Univ Artois, UCCS, CNRS,Cent Lille,ENSCL,UMR 8181, F-59000 Lille, France
基金
俄罗斯基础研究基金会;
关键词
TEMPERATURE-PROGRAMMED REDUCTION; IN-SITU; LOWER OLEFINS; CARBON-MONOXIDE; SELECTIVITY; CU; NANOPARTICLES; TRANSFORMATIONS; HYDROGENATION; PERFORMANCE;
D O I
10.1039/c6cy02676a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper addresses the effect of promotion with copper and potassium on the carbidisation kinetics, structure and performance of silica supported iron catalysts for high temperature Fischer-Tropsch synthesis. The promotion with copper and potassium results in the enhancement of iron dispersion. Small hematite nanoparticles were uncovered in the calcined iron catalysts. Activation of the calcined catalysts in carbon monoxide or syngas results in the reduction of hematite to magnetite at 250-300 degrees C. The magnetite is then carbidised into Hagg iron carbide. The promotion with copper and potassium affects the rate of the iron reduction and carbidisation. Copper strongly enhances both hematite reduction and magnetite carbidisation in carbon monoxide and syngas. The presence of potassium hinders reduction of hematite to magnetite. Much higher reaction rates were observed on copper-promoted catalysts than on the potassium-promoted and unpromoted counterparts while the promotion with potassium had a stronger impact on the selectivity.
引用
收藏
页码:2325 / 2334
页数:10
相关论文
共 49 条
[1]  
Anderson RB., 1956, Catalysis, VIV., P29
[2]  
Barret P., 1973, Cinetique Heterogene
[3]   MOLECULAR ORBITAL VIEW OF CHEMISORBED CARBON MONOXIDE [J].
BLYHOLDER, G .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (10) :2772-&
[4]   How does activation affect the cobalt crystallographic structure? An in situ XRD and magnetic study [J].
Braconnier, L. ;
Landrivon, E. ;
Clemencon, I. ;
Legens, C. ;
Diehl, F. ;
Schuurman, Y. .
CATALYSIS TODAY, 2013, 215 :18-23
[5]   Supported iron catalysts for slurry phase Fischer-Tropsch synthesis [J].
Bukur, DB ;
Sivaraj, C .
APPLIED CATALYSIS A-GENERAL, 2002, 231 (1-2) :201-214
[6]   Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer-Tropsch synthesis [J].
Cheng, Kang ;
Ordomsky, Vitaly V. ;
Legras, Benoit ;
Virginie, Mirella ;
Paul, Sebastien ;
Wang, Ye ;
Khodakov, Andrei Y. .
APPLIED CATALYSIS A-GENERAL, 2015, 502 :204-214
[7]   In situ characterization of the genesis of cobalt metal particles in silica-supported Fischer-Tropsch catalysts using Foner magnetic method [J].
Chernavskii, P. A. ;
Khodakov, A. Y. ;
Pankina, G. V. ;
Girardon, J. -S. ;
Quinet, E. .
APPLIED CATALYSIS A-GENERAL, 2006, 306 (108-119) :108-119
[8]   Mechanistic Aspects of the Activation of Silica-Supported Iron Catalysts for Fischer-Tropsch Synthesis in Carbon Monoxide and Syngas [J].
Chernavskii, P. A. ;
Kazak, V. O. ;
Pankina, G. V. ;
Ordomsky, V. V. ;
Khodakov, A. Y. .
CHEMCATCHEM, 2016, 8 (02) :390-395
[9]   Experimental setup for investigating topochemical transformations of ferromagnetic nanoparticles [J].
Chernavskii, P. A. ;
Lunin, B. S. ;
Zakharyan, R. A. ;
Pankina, G. V. ;
Perov, N. S. .
INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 2014, 57 (01) :78-81
[10]   Magnetic Characterization of Fischer-Tropsch Catalysts [J].
Chernavskii, P. A. ;
Dalmon, J. -A. ;
Perov, N. S. ;
Khodakov, A. Y. .
OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2009, 64 (01) :25-48