Analysis the Arabic Authorship Attribution Using Machine Learning Methods: Application on Islamic Fatwa

被引:1
作者
Al-Sarem, Mohammed [1 ,2 ]
Emara, Abdel-Hamid [3 ,4 ]
机构
[1] Taibah Univ, Dept Informat Syst, Medina, Saudi Arabia
[2] Sabaa Region Univ, Dept Comp Sci, Mareeb, Yemen
[3] Taibah Univ, Dept Comp Sci, Medina, Saudi Arabia
[4] Al Azhar Univ, Comp Syst & Engn Dept, Cairo, Egypt
来源
RECENT TRENDS IN DATA SCIENCE AND SOFT COMPUTING, IRICT 2018 | 2019年 / 843卷
关键词
Machine learning classifier; Arabic authorship attribution; Stylometric features; PCA; Accuracy;
D O I
10.1007/978-3-319-99007-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In context of Arabic, the authorship attribution (AA) problem is not addressed well comparing with other natural languages such English, Chinese and Dutch. This paper addresses the attribution problem in context of Islamic fatwa'. To the best of our knowledge, this is the first study of its kind that addresses this problem in such domain. In term of attribution methods, three machine-learning classifiers namely, the locally weighted learning (LWL) classifier, decision tree C4.5, and Random Forest (RF) are used. The experiment is performed with a selected list of stylomatric features. To extract the most discriminating features, various feature selection techniques are used. The experimental results show that the classifiers have different behaviour respect each feature reduction techniques. Among the used classifiers, the C4.5 method gives the best accuracy.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 16 条
[1]   Applying authorship analysis to extremist-group web forum messages [J].
Abbasi, A ;
Chen, HC .
IEEE INTELLIGENT SYSTEMS, 2005, 20 (05) :67-75
[2]   Feature extraction and selection for Arabic tweets authorship authentication [J].
Al-Ayyoub, Mahmoud ;
Jararweh, Yaser ;
Rabab'ah, Abdullateef ;
Aldwairi, Monther .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2017, 8 (03) :383-393
[3]  
Al-Falahi A., 2015, AUTHORSHIP ATTRIBUTI
[4]   Naive Bayes classifiers for authorship attribution of Arabic texts [J].
Altheneyan, Alaa Saleh ;
Menai, Mohamed El Bachir .
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2014, 26 (04) :473-484
[5]  
Crespo M., 2015, 33 C SPAN ASS APPL L
[6]  
Dunteman G. H, 1989, PRINCIPAL COMPONENTS, V69
[7]   Large-scale attribute selection using wrappers [J].
Guetlein, Martin ;
Frank, Eibe ;
Hall, Mark ;
Karwath, Andreas .
2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, 2009, :332-339
[8]  
Hall M.A., 1999, P 17 INT C MACHINE L, P359
[9]   A comparative study of machine learning methods for authorship attribution [J].
Jockers, Matthew L. ;
Witten, Daniela M. .
LITERARY AND LINGUISTIC COMPUTING, 2010, 25 (02) :215-223
[10]   Experiments on authorship attribution by intertextual distance in english [J].
Labbe, Dominique .
JOURNAL OF QUANTITATIVE LINGUISTICS, 2007, 14 (01) :33-80