Inhomogeneous Diophantine approximation on curves and Hausdorff dimension

被引:8
作者
Badziahin, Dzmitry [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Diophantine approximation; Lebesgues measure; Hausdorff dimension; Non-degenerate curve; Khintchine theorem; PLANAR CURVES; THEOREM; CONVERGENCE;
D O I
10.1016/j.aim.2009.08.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to develop a coherent theory for inhomogeneous Diophantine approximation on curves in R-n akin to the well established homogeneous theory. More specifically, the measure theoretic results obtained generalize the fundamental homogeneous theorems of R.C. Baker (1978) [2], Dodson, Dickinson (2000) [18] and Beresnevich, Bernik, Kleinbock, Margulis (2002) [8]. In the case of planar curves, the complete Hausdorff dimension theory is developed. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:329 / 351
页数:23
相关论文
共 30 条
[21]  
Falconer KJ, 1999, Fractal geometry: mathematical foundations and applications
[22]   Flows on homogeneous spaces and Diophantine approximation on manifolds [J].
Kleinbock, DY ;
Margulis, GA .
ANNALS OF MATHEMATICS, 1998, 148 (01) :339-360
[23]  
KLEINBOCK DY, 2007, ENCY COMPLEXITY SYST
[24]   The measurement of the amount of S-digits. [J].
Mahler, K .
MATHEMATISCHE ANNALEN, 1932, 106 :131-139
[25]  
Margulis G, 2002, PANORAMA IN NUMBER THEORY OR THE VIEW FROM BAKER'S GARDEN, P280
[26]  
Pyartli A. S., 1969, FUNKTSION ANAL EGO P, V3, P59
[27]  
Schmidt W.M., 1964, MONATSH MATH, V68, P154
[28]  
SPRINDZUK VG, 1969, T MATH MONOGR, V25
[29]  
SPRINDZUK VG, 1967, MAHLERS PROBLEM METR
[30]   Diophantine approximation on planar curves: the convergence theory [J].
Vaughan, R. C. ;
Velani, S. .
INVENTIONES MATHEMATICAE, 2006, 166 (01) :103-124