Inhomogeneous Diophantine approximation on curves and Hausdorff dimension

被引:8
作者
Badziahin, Dzmitry [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Diophantine approximation; Lebesgues measure; Hausdorff dimension; Non-degenerate curve; Khintchine theorem; PLANAR CURVES; THEOREM; CONVERGENCE;
D O I
10.1016/j.aim.2009.08.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to develop a coherent theory for inhomogeneous Diophantine approximation on curves in R-n akin to the well established homogeneous theory. More specifically, the measure theoretic results obtained generalize the fundamental homogeneous theorems of R.C. Baker (1978) [2], Dodson, Dickinson (2000) [18] and Beresnevich, Bernik, Kleinbock, Margulis (2002) [8]. In the case of planar curves, the complete Hausdorff dimension theory is developed. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:329 / 351
页数:23
相关论文
共 30 条
[1]  
BADZIAHIN DA, 2005, VESTSI NATS AKAD FMN, V126, P32
[3]  
Beresnevich V, 2006, MEM AM MATH SOC, V179, P1
[4]  
Beresnevich V, 1996, ACTA ARITH, V75, P219
[5]   A Groshev type theorem for convergence on manifolds [J].
Beresnevich, V .
ACTA MATHEMATICA HUNGARICA, 2002, 94 (1-2) :99-130
[6]  
Beresnevich V, 1999, ACTA ARITH, V90, P97
[7]  
BERESNEVICH V, SIMULTANEOUS INHOMOG
[8]  
BERESNEVICH V, INHOMOGENEOUS TRANSF
[9]   METRIC DIOPHANTINE APPROXIMATION: THE KHINTCHINE-GROSHEV THEOREM FOR NONDEGENERATE MANIFOLDS [J].
Beresnevich, V. V. ;
Bernik, V. I. ;
Kleinbock, D. Y. ;
Margulis, G. A. .
MOSCOW MATHEMATICAL JOURNAL, 2002, 2 (02) :203-225
[10]  
BERESNEVICH V. V., 2002, DOKL NATS AKAD NAUK, V46, p[18, 124]