Real eigenspectra in non-Hermitian multidimensional Hamiltonians

被引:37
作者
Nanayakkara, A [1 ]
机构
[1] Inst Fundamental Studies, Kandy, Sri Lanka
关键词
D O I
10.1016/S0375-9601(02)01359-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hamiltonian H = 1/2(P-x(2) + P-y(2)) + 1/2(omega(x)(2)x(2) + omega(y)(2)y(2))-igx(N)y(M), where g is a real parameter and N and M are positive integers, is investigated. We show that energy levels of this Hamiltonian are either real or come in complex conjugate pairs when at least one of N and M is an odd integer, by showing that H is eta-pseudo-Hermitian. For even N and M, the spectra was found to be entirely complex. The investigation is general and results are valid for the systems in more than two dimensions. We study, in detail, the cases where H is not PT-symmetric, but eta-pseudo-Hermitian. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:67 / 72
页数:6
相关论文
共 23 条
  • [1] Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential
    Ahmed, Z
    [J]. PHYSICS LETTERS A, 2001, 282 (06) : 343 - 348
  • [2] SUSY quantum mechanics with complex superpotentials and real energy spectra
    Andrianov, AA
    Ioffe, MV
    Cannata, F
    Dedonder, JP
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (17): : 2675 - 2688
  • [3] [Anonymous], 1977, Quantum mechanics
  • [4] Complex periodic potentials with real band spectra
    Bender, CM
    Dunne, GV
    Meisinger, PN
    [J]. PHYSICS LETTERS A, 1999, 252 (05) : 272 - 276
  • [5] Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian
    Bender, CM
    Dunne, GV
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (10) : 4616 - 4621
  • [6] Real spectra in non-Hermitian Hamiltonians having PT symmetry
    Bender, CM
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5243 - 5246
  • [7] PT-symmetric quantum mechanics
    Bender, CM
    Boettcher, S
    Meisinger, PN
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2201 - 2229
  • [8] BENDER CM, 2001, PHYS LETT A, V311, P281
  • [9] EQUIVALENCE OF UNSTABLE ANHARMONIC-OSCILLATORS AND DOUBLE WELLS
    BUSLAEV, V
    GRECCHI, V
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20): : 5541 - 5549
  • [10] PERTURBATION-THEORY OF ODD ANHARMONIC-OSCILLATORS
    CALICETI, E
    GRAFFI, S
    MAIOLI, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 75 (01) : 51 - 66