SAR Speckle Removal Using Hybrid Frequency Modulations

被引:58
作者
Liu, Shuaiqi [1 ,2 ]
Gao, Lele [1 ,2 ]
Lei, Yu [1 ,2 ]
Wang, Miaohui [3 ,4 ,5 ]
Hu, Qi [6 ]
Ma, Xiaole [6 ]
Zhang, Yu-Dong [7 ]
机构
[1] Hebei Univ, Key Lab Digital Med Engn Hebei Prov, Coll Elect & Informat Engn, Baoding 071002, Peoples R China
[2] Hebei Univ, Machine Vis Engn Res Ctr Hebei Prov, Baoding 071002, Peoples R China
[3] Shenzhen Univ, Key Lab Media Secur, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[4] Shenzhen Univ, Guangdong Lab Artificial Intelligence & Digital E, Shenzhen 518060, Peoples R China
[5] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen 518060, Peoples R China
[6] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[7] Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 05期
关键词
Consistent cycle spinning (CCS); convolutional neural network (CNN); nonsubsample shearlet transform (NSST); synthetic aperture radar (SAR) speckle removal; SHEARLET TRANSFORM; WAVELET SHRINKAGE; DIFFUSION; FRAMEWORK; CONTEXT; IMAGES; DOMAIN;
D O I
10.1109/TGRS.2020.3014130
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Synthetic aperture radar (SAR) images often interfere with speckle artifacts that have a great impact on subsequent processing and analysis operations. To remove speckle artifacts, this article introduces a hybrid denoising approach by using a convolutional neural network (CNN) and consistent cycle spinning (CCS) in the nonsubsample shearlet transform (NSST) domain. First, we apply NSST to a noisy SAR image to gain low- and high-frequency coefficients. Second, we adopt a learned deep CNN model to eliminate the speckle noise in the low-frequency coefficients, which retains more contour information. Third, we employ CCS to enhance the high-frequency coefficients, which preserves more details of the original SAR image. Finally, we obtain the denoised image by using inverse NSST applied to the denoised coefficients. Compared with state-of-the-art algorithms, the results of the experiment indicate that our method not only achieves better speckle removal performance but also maintains more detailed information retention.
引用
收藏
页码:3956 / 3966
页数:11
相关论文
共 46 条
  • [1] Baruah HG, 2019, TENCON IEEE REGION, P463, DOI [10.1109/TENCON.2019.8929481, 10.1109/tencon.2019.8929481]
  • [2] Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration
    Chen, Yunjin
    Pock, Thomas
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) : 1256 - 1272
  • [3] Chierchia G, 2017, INT GEOSCI REMOTE SE, P5438, DOI 10.1109/IGARSS.2017.8128234
  • [4] Bayesian wavelet shrinkage with edge detection for SAR image despeckling
    Dai, M
    Peng, C
    Chan, AK
    Loguinov, D
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08): : 1642 - 1648
  • [5] Iterative Weighted Maximum Likelihood Denoising With Probabilistic Patch-Based Weights
    Deledalle, Charles-Alban
    Denis, Loic
    Tupin, Florence
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (12) : 2661 - 2672
  • [6] Benchmarking Framework for SAR Despeckling
    Di Martino, Gerardo
    Poderico, Mariana
    Poggi, Giovanni
    Riccio, Daniele
    Verdoliva, Luisa
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (03): : 1596 - 1615
  • [7] CT image denoising using multivariate model and its method noise thresholding in non-subsampled shearlet domain
    Diwakar, Manoj
    Singh, Prabhishek
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 57
  • [8] Eslami R, 2003, CONF REC ASILOMAR C, P1982
  • [9] Hybrid SAR Speckle Reduction Using Complex Wavelet Shrinkage and Non-Local PCA-Based Filtering
    Farhadiani, Ramin
    Homayouni, Saeid
    Safari, Abdolreza
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (05) : 1489 - 1496
  • [10] SAR Image Despeckling Based on Local Homogeneous-Region Segmentation by Using Pixel-Relativity Measurement
    Feng, Hongxiao
    Hou, Biao
    Gong, Maoguo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (07): : 2724 - 2737