Generalized Lebesgue points for Sobolev functions

被引:6
作者
Karak, Nijjwal [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, FI-40014 Jyvaskyla, Finland
基金
芬兰科学院;
关键词
Sobolev space; metric measure space; median; generalized Lebesgue point; METRIC MEASURE-SPACES; HAUSDORFF MEASURES; INEQUALITY; CAPACITIES; OSCILLATION;
D O I
10.21136/CMJ.2017.0405-15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space (X, d, mu) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B(x, r) converge to f(x) when r converges to 0. We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function. We show that a function f a M (s,p) (X), 0 < s ae<currency> 1, 0 < p < 1, where X is a doubling metric measure space, has generalized Lebesgue points outside a set of -Hausdorff measure zero for a suitable gauge function h.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 27 条
  • [11] Hajlasz P, 1998, REV MAT IBEROAM, V14, P601
  • [12] Hajlasz P, 2000, MEM AM MATH SOC, V145, pIX
  • [13] Hedberg LI, 2007, MEM AM MATH SOC, V188, P1
  • [14] Heikkinen T., T AM MATH S IN PRESS
  • [15] Heinonen J., 2006, Nonlinear Potential Theory of Degenerate Elliptic Equations
  • [16] Capacities and Hausdorff measures on metric spaces
    Karak, Nijjwal
    Koskela, Pekka
    [J]. REVISTA MATEMATICA COMPLUTENSE, 2015, 28 (03): : 733 - 740
  • [17] Lebesgue points via the Poincar, inequality
    Karak, Nijjwal
    Koskela, Pekka
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (08) : 1697 - 1706
  • [18] Kinnunen J, 2002, REV MAT IBEROAM, V18, P685
  • [19] Lebesgue points and capacities via the boxing inequality in metric spaces
    Kinnunen, Juha
    Korte, Riikka
    Shanmugalingam, Nageswari
    Tuominen, Heli
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) : 401 - 430
  • [20] Koskela P, 2008, MATH RES LETT, V15, P727