Comparative study on AL2O3 nanoparticle addition on cool storage system performance

被引:21
作者
Attia, Ahmed A. A. [1 ]
Altohamy, Ahmed A. [1 ]
Abd Rabbo, M. F. [1 ]
Sakr, R. Y. [1 ]
机构
[1] Benha Univ, Shoubra Fac Engn, Dept Mech Engn, 108 Shoubra St, Cairo, Egypt
关键词
Cool thermal storage; PCM; Nanoparticle; Solidification; HTF; PHASE-CHANGE MATERIAL; THERMAL-CONDUCTIVITY; ENERGY; SOLIDIFICATION; NANOFLUIDS;
D O I
10.1016/j.applthermaleng.2015.10.142
中图分类号
O414.1 [热力学];
学科分类号
摘要
Adding nanoparticles almost enhance the thermal transport properties in thermal storage system. Nanoparticles could be used in two manners, the first one with Phase Change Material (PCM) as a nucleation agent to help the fast formation of crystals in solidification process. The second manner with Heat Transfer Fluid (HTF) to enhance the rate of heat transfer through the heat transfer process. In the present study a comparison between adding Al2O3 nanoparticles to either distilled water as PCM, and to aqua ethylene glycol solution of 50% wt as a HTF on the performance of cool storage system. A spherical capsule with 85% filling of its internal volume with PCM is used as a tested platform. A set of experiments to study the effect of adding Al2O3 nanoparticles to HTF at different volume fraction concentrations up to 1% for different HTF inlet temperature and volume flow rates on the solidified mass fraction, surface heat flux and complete solidification time, was performed. Comparing the present results with those for nanoparticles with PCM, it could be concluded that adding the nanoparticles to PCM alone is much beneficial to cool storage system than adding it to HTF alone. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:449 / 457
页数:9
相关论文
共 13 条
[1]   Effect of water based Al2O3 nanoparticle PCM on cool storage performance [J].
Altohamy, Ahmed A. ;
Rabbo, M. F. Abd ;
Sakr, R. Y. ;
Attia, Ahmed A. A. .
APPLIED THERMAL ENGINEERING, 2015, 84 :331-338
[2]   Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system [J].
Chandrasekaran, P. ;
Cheralathan, M. ;
Kumaresan, V. ;
Velraj, R. .
ENERGY, 2014, 72 :636-642
[3]   Solidification behavior of water based nanofluid phase change material with a nucleating agent for cool thermal storage system [J].
Chandrasekaran, P. ;
Cheralathan, M. ;
Kumaresan, V. ;
Velraj, R. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 41 :157-163
[4]   Effect of particle size on thermal conductivity of nanofluid [J].
Chopkar, M. ;
Sudarshan, S. ;
Das, P. K. ;
Manna, I. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2008, 39A (07) :1535-1542
[5]   Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles [J].
Eastman, JA ;
Choi, SUS ;
Li, S ;
Yu, W ;
Thompson, LJ .
APPLIED PHYSICS LETTERS, 2001, 78 (06) :718-720
[6]   Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials [J].
Esen, M ;
Ayhan, T .
ENERGY CONVERSION AND MANAGEMENT, 1996, 37 (12) :1775-1785
[7]   Thermal performance of a solar-aided latent heat store used for space heating by heat pump [J].
Esen, M .
SOLAR ENERGY, 2000, 69 (01) :15-25
[8]   Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids [J].
Khedkar, Rohit S. ;
Sonawane, Shriram S. ;
Wasewar, Kailas L. .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2012, 39 (05) :665-669
[9]   Effect of prolonged ultrasonication on the thermal conductivity of ZnO-ethylene glycol nanofluids [J].
Kole, Madhusree ;
Dey, T. K. .
THERMOCHIMICA ACTA, 2012, 535 :58-65
[10]   Role of PCM based nanofluids for energy efficient cool thermal storage system [J].
Kumaresan, V. ;
Chandrasekaran, P. ;
Nanda, Maitreyee ;
Maini, A. K. ;
Velraj, R. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2013, 36 (06) :1641-1647