On Approximate Euler Differential Equations

被引:12
作者
Jung, Soon-Mo [1 ]
Min, Seungwook [2 ]
机构
[1] Hongik Univ, Coll Sci & Technol, Math Sect, Jochiwon 339701, South Korea
[2] Sangmyung Univ, Div Comp Sci, Seoul 110743, South Korea
关键词
ULAM-RASSIAS STABILITY;
D O I
10.1155/2009/537963
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the inhomogeneous Euler differential equations of the form x(2)y ''(x) + axy'(x) + beta y(x) = Sigma(infinity)(m=0) a(m)x(m) and apply this result to the approximation of analytic functions of a special type by the solutions of Euler differential equations. Copyright (C) 2009 S.-M. Jung and S. Min.
引用
收藏
页数:8
相关论文
共 22 条
[1]   On some inequalities and stability results related to the exponential function [J].
Alsina, C ;
Ger, R .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 1998, 2 (04) :373-380
[2]  
[Anonymous], HYERSULAMRASSIAS STA
[3]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[4]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[5]  
Czerwik Stefan, 2002, Functional Equations and Inequalities in Several Variables, P4
[6]  
Forti GL, 1995, Aequationes Math, V50, P143, DOI DOI 10.1007/BF01831117
[7]   A GENERALIZATION OF THE HYERS-ULAM-RASSIAS STABILITY OF APPROXIMATELY ADDITIVE MAPPINGS [J].
GAVRUTA, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :431-436
[8]  
Hyers D.H., 1992, Aequationes Math, V44, P125, DOI [DOI 10.1007/BF01830975, 10.1007/BF01830975]
[9]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[10]   An approximation property of exponential functions [J].
Jung, S. -M. .
ACTA MATHEMATICA HUNGARICA, 2009, 124 (1-2) :155-163