A simple mathematical model for anomalous diffusion via Fisher's information theory

被引:30
作者
Ubriaco, Marcelo R. [1 ]
机构
[1] Univ Puerto Rico, Dept Phys, Theoret Phys Lab, Rio Piedras, PR 00931 USA
关键词
Entropy; Fisher information; Anomalous diffusion; FOKKER-PLANCK EQUATION; STATISTICAL-MECHANICS; FRACTIONAL DIFFUSION; ENTROPIES; TSALLIS;
D O I
10.1016/j.physleta.2009.08.064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Starting with the relative entropy based on a previously proposed entropy function S-q vertical bar P vertical bar = integral dx p(x) x (-In p(x))(q), we find the corresponding Fisher's information measure. After function redefinition we then maximize the Fisher information measure with respect to the new function and obtain a differential operator that reduces to a space coordinate second derivative in the q 1 limit. We then propose a simple differential equation for anomalous diffusion and show that its solutions are a generalization or the functions in the Barenblatt-Pattie solution. We find that the mean squared displacement, Lip to a q-dependent constant, has a time dependence according to < x(2)> similar to K(1/q)t(1/q), where the parameter q takes values q = 2n-1/sn+1 (superdiffusion) and q = 2n+1/2n-1 (subdiffusion), for all n >= 1. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4017 / 4021
页数:5
相关论文
共 42 条