Achieving Out-of-Plane Thermoelectric Figure of Merit ZT=1.44 in a p-Type Bi2Te3/Bi0.5Sb1.5Te3 Superlattice Film with Low Interfacial Resistance

被引:30
作者
Park, No-Won [1 ]
Lee, Won-Yong [1 ]
Yoon, Yo-Seop [1 ]
Kim, Gil-Sung [1 ]
Yoon, Young-Gui [1 ]
Lee, Sang-Kwon [1 ]
机构
[1] Chung Ang Univ, Dept Phys, Seoul 06974, South Korea
基金
新加坡国家研究基金会;
关键词
phonon transport; energy filtering effect; out-of-plane thermoelectric properties; phonon scattering; thermal conductivity; Seebeck coefficient; BISMUTH-ANTIMONY TELLURIDE; TRANSPORT-PROPERTIES; THIN-FILMS; PERFORMANCE; POWER; BI0.5SB1.5TE3;
D O I
10.1021/acsami.9b11042
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recently, low-dimensional superlattice films have attracted significant attention because of their low dimensionality and anisotropic thermoelectric (TE) properties such as the Seebeck coefficient, electrical conductivity, and thermal conductivity. For these superlattice structures, both electrons and phonons show highly anisotropic behavior and exhibit much stronger interface scattering in the out-of-plane direction of the films compared to the in-plane direction. However, no detailed information is available in the literature for the out-of-plane TE properties of the superlattice-based films. In this report, we present the out-of-plane Seebeck coefficient, thermal conductivity, and electrical properties of p-type Bi2Te3/Bi0.5Sb1.5Te3 (bismuth telluride/bismuth antimony telluride, BT/BST) superlattice films in the temperature range of 77-500 K. Because of the synergistic combination of the energy filtering effect and low interfacial resistance of the superlattice structure, an impressively high ZT of 1.44 was achieved at 400 K for the 200 nm-thick p-type BT/BST superlattice film, corresponding to a 43% ZT enhancement compared to the pristine p-BST films with the same thickness.
引用
收藏
页码:38247 / 38254
页数:8
相关论文
共 49 条
[1]   Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials [J].
Bahk, Je-Hyeong ;
Bian, Zhixi ;
Shakouri, Ali .
PHYSICAL REVIEW B, 2013, 87 (07)
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]   Highly textured Bi2Te3-based materials for thermoelectric energy conversion [J].
Ben-Yehuda, O. ;
Shuker, R. ;
Gelbstein, Y. ;
Dashevsky, Z. ;
Dariel, M. P. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (11)
[4]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[5]   Transport properties of thermoelectric Bi0.5Sb1.5Te3 and Bi2Te2.7Se0.3 thin films [J].
Bourgault, D. ;
Schaechner, B. ;
Garampon, C. Giroud ;
Crozes, T. ;
Caillault, N. ;
Carbone, L. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 598 :79-84
[6]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/NMAT3012, 10.1038/nmat3012]
[7]   Superlattice-based thin-film thermoelectric modules with high cooling fluxes [J].
Bulman, Gary ;
Barletta, Phil ;
Lewis, Jay ;
Baldasaro, Nicholas ;
Manno, Michael ;
Bar-Cohen, Avram ;
Yang, Bao .
NATURE COMMUNICATIONS, 2016, 7
[8]   Great enhancements in the thermoelectric power factor of BiSbTe nanostructured films with well-ordered interfaces [J].
Chang, Hsiu-Cheng ;
Chen, Chun-Hua ;
Kuo, Yung-Kang .
NANOSCALE, 2013, 5 (15) :7017-7025
[9]  
Chowdhury I, 2009, NAT NANOTECHNOL, V4, P235, DOI [10.1038/NNANO.2008.417, 10.1038/nnano.2008.417]
[10]   Thermal conductivity in Bi0.5Sb1.5Te3+x and the role of dense dislocation arrays at grain boundaries [J].
Deng, Rigui ;
Su, Xianli ;
Zheng, Zheng ;
Liu, Wei ;
Yan, Yonggao ;
Zhang, Qingjie ;
Dravid, Vinayak P. ;
Uher, Ctirad ;
Kanatzidis, Mercouri G. ;
Tang, Xinfeng .
SCIENCE ADVANCES, 2018, 4 (06)