ST-DMQL: A Semantic Trajectory Data Mining Query Language

被引:43
作者
Bogorny, Vania [1 ]
Kuijpers, Bart [2 ]
Alvares, Luis Otavio [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Informat, Porto Alegre, RS, Brazil
[2] Hasselt Univ, Dept WNI, Diepenbeek, Belgium
关键词
Moving objects; Trajectories; Semantics; Trajectory query language; Trajectory knowledge discovery; Trajectory data mining;
D O I
10.1080/13658810802231449
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Mobile devices are becoming very popular in recent years, and large amounts of trajectory data are generated by these devices. Trajectories left behind cars, humans, birds or other objects are a new kind of data which can be very useful in the decision making process in several application domains. These data, however, are normally available as sample points, and therefore have very little or no semantics. The analysis and knowledge extraction from trajectory sample points is very difficult from the user's point of view, and there is an emerging need for new data models, manipulation techniques, and tools to extract meaningful patterns from these data. In this paper we propose a new methodology for knowledge discovery from trajectories. We propose through a semantic trajectory data mining query language several functionalities to select, preprocess, and transform trajectory sample points into semantic trajectories at higher abstraction levels, in order to allow the user to extract meaningful, understandable, and useful patterns from trajectories. We claim that meaningful patterns can only be extracted from trajectories if the background geographical information is considered. Therefore we build the proposed methodology considering both moving object data and geographic information. The proposed language has been implemented in a toolkit in order to provide a first software prototype for trajectory knowledge discovery.
引用
收藏
页码:1245 / 1276
页数:32
相关论文
共 35 条
[1]  
ABITEBOUL S, 1989, LECT NOTES COMPUTER, V361
[2]  
Agrawal R., 1993, SIGMOD Record, V22, P207, DOI 10.1145/170036.170072
[3]  
AGRAWAL R, 1995, PROC INT CONF DATA, P3, DOI 10.1109/ICDE.1995.380415
[4]  
Agrawal R., 1994, P 20 INT C VER LARG, V1215, P487, DOI DOI 10.5555/645920.672836
[5]  
Alvares L.O., 2007, Towards Semantic Trajectory
[6]  
ALVARES LO, 2007, P 26 INT C CONC MOD, P149
[7]  
[Anonymous], 2007, P ACM GIS ACM PRESS
[8]   The deductive database system LDL++ [J].
Arni, F ;
Ong, KL ;
Tsur, S ;
Wang, HX ;
Zaniolo, C .
THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2003, 3 :61-94
[9]  
BOGORNY V, 2006, P WAAMD WORKSH, P9
[10]   Extending the state-of-the-art of constraint-based pattern discovery [J].
Bonchi, Francesco ;
Lucchese, Claudio .
DATA & KNOWLEDGE ENGINEERING, 2007, 60 (02) :377-399