Escaping Death: Mitochondrial Redox Homeostasis in Cancer Cells

被引:78
作者
Ciccarese, Francesco [1 ]
Ciminale, Vincenzo [1 ,2 ]
机构
[1] Univ Padua, Dept Surg Oncol & Gastroenterol, Padua, Italy
[2] Veneto Inst Oncol IRCCS, Padua, Italy
关键词
mitochondria; reactive oxygen species; cancer metabolism; nicotinamide adenine dinucleotide phosphate; apoptosis; NICOTINAMIDE NUCLEOTIDE TRANSHYDROGENASE; NADP(+)-DEPENDENT ISOCITRATE DEHYDROGENASE; MONOAMINE-OXIDASE MAO; ONE-CARBON METABOLISM; PERMEABILITY TRANSITION PORE; OXYGEN SPECIES GENERATION; NAD KINASE; OXIDATIVE STRESS; HYDROGEN-PEROXIDE; CYTOCHROME-C;
D O I
10.3389/fonc.2017.00117
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Reactive oxygen species (ROS) are important signaling molecules that act through the oxidation of nucleic acids, proteins, and lipids. Several hallmarks of cancer, including uncontrolled proliferation, angiogenesis, and genomic instability, are promoted by the increased ROS levels commonly found in tumor cells. To counteract excessive ROS accumulation, oxidative stress, and death, cancer cells tightly regulate ROS levels by enhancing scavenging enzymes, which are dependent on the reducing cofactor nicotinamide adenine dinucleotide phosphate (NADPH). This review focuses on mitochondrial ROS homeostasis with a description of six pathways of NADPH production in mitochondria and a discussion of the possible strategies of pharmacological intervention to selectively eliminate cancer cells by increasing their ROS levels.
引用
收藏
页数:16
相关论文
共 118 条
[1]   A Caenorhabditis elegans mutant lacking functional nicotinamide nucleotide transhydrogenase displays increased sensitivity to oxidative stress [J].
Arkblad, EL ;
Tuck, S ;
Pestov, NB ;
Dmitriev, RI ;
Kostina, MB ;
Stenvall, J ;
Tranberg, M ;
Rydström, J .
FREE RADICAL BIOLOGY AND MEDICINE, 2005, 38 (11) :1518-1525
[2]   The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production [J].
Bell, Eric L. ;
Klimova, Tatyana A. ;
Eisenbart, James ;
Moraes, Carlos T. ;
Murphy, Michael P. ;
Budinger, G. R. Scott ;
Chandel, Navdeep S. .
JOURNAL OF CELL BIOLOGY, 2007, 177 (06) :1029-1036
[3]   mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle [J].
Ben-Sahra, Issam ;
Hoxhaj, Gerta ;
Ricoult, Stephane J. H. ;
Asara, John M. ;
Manning, Brendan D. .
SCIENCE, 2016, 351 (6274) :728-733
[4]   PROPERTIES OF MONOAMINE-OXIDASE (MAO) IN HUMAN-BLOOD PLATELETS, PLASMA, LYMPHOCYTES AND GRANULOCYTES [J].
BOND, PA ;
CUNDALL, RL .
CLINICA CHIMICA ACTA, 1977, 80 (02) :317-326
[5]   Division of labour: how does folate metabolism partition between one-carbon metabolism and amino acid oxidation? [J].
Brosnan, Margaret E. ;
MacMillan, Luke ;
Stevens, Jennifer R. ;
Brosnan, John T. .
BIOCHEMICAL JOURNAL, 2015, 472 :135-146
[6]   Tumor hypoxia in cancer therapy [J].
Brown, J. Martin .
OXYGEN BIOLOGY AND HYPOXIA, 2007, 435 :297-+
[7]   Iron and Reactive Oxygen Species: Friends or Foes of Cancer Cells? [J].
Bystrom, Laura M. ;
Guzman, Monica L. ;
Rivella, Stefano .
ANTIOXIDANTS & REDOX SIGNALING, 2014, 20 (12) :1917-1924
[8]   Evolution of Mitochondria as Signaling Organelles [J].
Chandel, Navdeep S. .
CELL METABOLISM, 2015, 22 (02) :204-206
[9]   Human Mitochondrial NAD(P)+-Dependent Malic Enzyme Participates in Cutaneous Melanoma Progression and Invasion [J].
Chang, Yung-Lung ;
Gao, Hong-Wei ;
Chiang, Chien-Ping ;
Wang, Wei-Ming ;
Huang, Shih-Ming ;
Ku, Chien-Fen ;
Liu, Guang-Yaw ;
Hung, Hui-Chih .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2015, 135 (03) :807-815
[10]   MITOCHONDRIAL-MEMBRANE POTENTIAL IN LIVING CELLS [J].
CHEN, LB .
ANNUAL REVIEW OF CELL BIOLOGY, 1988, 4 :155-181