Crystallization and sintering studies on an anomalous Li2O-Al2O3-SiO2 glass for making tunable thermal expansion ceramic

被引:3
作者
Venkateswaran, Chinnu [1 ]
Sreemoolanadhan, Harihara, I [1 ]
Pant, Bhanu [1 ]
Sharma, Sharad C. [1 ]
Chauhan, Vishal S. [2 ]
Vaish, Rahul [2 ]
机构
[1] ISRO, Vikram Sarabhai Space Ctr, Thiruvananthapuram, Kerala, India
[2] Indian Inst Technol, Sch Engn, Mandi, Himachal Prades, India
关键词
glass; glass‐ ceramic; lithium aluminosilicate; low expansion glass‐ TRANSITION TEMPERATURE; ELASTIC-MODULUS; TIO2; CONTENT; KINETICS; COMPOSITES; MICROSTRUCTURE; INDENTATION; RESISTANCE; HARDNESS; GROWTH;
D O I
10.1111/ijag.15917
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work is an attempt to understand the crystallization behavior of unconventional LAS (1:1.2:7) composition having MgO, BaO, K2O, and ZrO2. Crystallization parameters were determined using thermo-analytical models based on differential scanning calorimetry (DSC). The activation energy of crystallization, E, and frequency factor, nu were calculated to be 354.40 kJ mol(-1 )K(-1) and 1.63 x 10(,)(15) respectively. Effect of sintering temperature on density, phase constitution, thermal expansion, and microstructure is reported herein. The temperature range between 1373 K and 1473 K was found to be the optimum window for sintering the glass particles. Glass-ceramic with CTE matching the Fe-Ni alloy is reported herein. Considering the LAS glass system's better sinterability, efforts were made toward sintering alumina with LAS glass as a sintering aid. The 5 wt%. LAS/Al2O3 composite was prepared with density: 3.6 g/cm(3), relative permittivity 10.5, and dielectric loss tangent 2.45 x 10(-3). This composition was found to be a potential CTE compensator material while processing tailorable CTE ceramics.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 55 条
[1]   Influence of various alkali and divalent metal oxides on phase transformations in NiO-doped glasses of the Li2O-Al2O3-SiO2-TiO2 system [J].
Alekseeva, I. ;
Dymshits, O. ;
Tsenter, M. ;
Zhilin, A. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (11-13) :2209-2214
[2]   Densification, mechanical and microstructure properties of β-spodumene-alumina composites [J].
Awaad, M ;
Mörtel, H ;
Naga, SM .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2005, 16 (06) :377-381
[3]  
Bach H., 2013, LOW THERMAL EXPANSIO
[4]   Resistance of alumina-spodumene ceramics to thermal shock [J].
Bayuseno, AP ;
Latella, BA ;
O'Connor, BH .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999, 82 (04) :819-824
[5]   Nanophase glass-ceramics [J].
Beall, GH ;
Pinckney, LR .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1999, 82 (01) :5-16
[6]  
Beall GH., 2019, GLASS CERAMIC TECHNO
[7]   High thermal stability of microwave sintered low-εr β-eucryptite materials [J].
Benavente, Rut ;
Dolores Salvador, Maria ;
Penaranda-Foix, Felipe L. ;
Garcia-Moreno, Olga ;
Borrell, Amparo .
CERAMICS INTERNATIONAL, 2015, 41 (10) :13817-13822
[8]   Direct Evidence of Al-Rich Layers around Nanosized ZrTiO4 in Glass: Putting the Role of Nucleation Agents in Perspective [J].
Bhattacharyya, Somnath ;
Hoeche, Thomas ;
Jinschek, Joerg R. ;
Avramov, Isak ;
Wurth, Roman ;
Mueller, Matthias ;
Ruessel, Christian .
CRYSTAL GROWTH & DESIGN, 2010, 10 (01) :379-385
[9]   Lithium aluminosilicate reinforced with carbon nanofiber and alumina for controlled-thermal-expansion materials [J].
Borrell, Amparo ;
Garcia-Moreno, Olga ;
Torrecillas, Ramon ;
Garcia-Rocha, Victoria ;
Fernandez, Adolfo .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2012, 13 (01)
[10]  
BUERGER MJ, 1954, AM MINERAL, V39, P600