3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair

被引:83
|
作者
Huang, Jianghong [1 ,2 ,3 ]
Huang, Zhiwang [1 ]
Liang, Yujie [2 ,3 ,4 ]
Yuan, Weihao [5 ]
Bian, Liming [5 ]
Duan, Li [1 ,6 ]
Rong, Zhibin [7 ]
Xiong, Jianyi [1 ]
Wang, Daping [1 ,6 ,8 ]
Xia, Jiang [2 ,3 ]
机构
[1] Shenzhen Univ, Dept Orthoped,Hlth Sci Ctr,Shenzhen Peoples Hosp, Guangdong Artificial Intelligence Biomed Innovat, Shenzhen Intelligent Orthopaed & Biomed Innovat P, Shenzhen 518035, Peoples R China
[2] Chinese Univ Hong Kong, Sch Life Sci, Dept Chem, Shatin, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Ctr Cell & Dev Biol, Sch Life Sci, Shatin, Hong Kong, Peoples R China
[4] Shenzhen Kangning Hosp, Shenzhen Mental Hlth Ctr, Shenzhen 518020, Guangdong, Peoples R China
[5] Chinese Univ Hong Kong, Dept Biomed Engn, Shatin, Hong Kong, Peoples R China
[6] Guangzhou Med Univ, Guangzhou 511436, Guangdong, Peoples R China
[7] Shijiazhuang Matern & Child Hlth Hosp, Shijiazhuang 050093, Hebei, Peoples R China
[8] Southern Univ Sci & Technol, Dept Biomed Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Stem cells;
D O I
10.1039/d0bm02103b
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Acute injury of the articular cartilage can lead to chronic disabling conditions because of the limited self-repair capability of the cartilage. Implantation of stem cells at the injury site is a viable treatment, but requires a scaffold with a precisely controlled geometry and porosity in the 3D space, high biocompatibility, and the capability of promoting chondrogenic differentiation of the implanted stem cells. Here we report the development of gelatin/hydroxyapatite (HAP) hybrid materials by microextrusion 3D bioprinting and enzymatic cross-linking as the scaffold for human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). The scaffold supports the adhesion, growth, and proliferation of hUCB-MSCs and induces their chondrogenic differentiation in vitro. Doping HAP in the gelatin scaffold increases the fluidity of the hydrogel, improves the gelation kinetics and the rheological properties, and allows better control over 3D printing. Implanting the hUCB-MSC-laden scaffold at the injury site of the articular cartilage effectively repairs the cartilage defects in a pig model. Altogether, this work demonstrates the 3D printing of gelatin-based scaffold materials for hUCB-MSCs to repair cartilage defects as a potential treatment of articular cartilage injury.
引用
收藏
页码:2620 / 2630
页数:11
相关论文
共 50 条
  • [31] 3D Printed Wavy Scaffolds Enhance Mesenchymal Stem Cell Osteogenesis
    Ji, Shen
    Guvendiren, Murat
    MICROMACHINES, 2020, 11 (01)
  • [32] Human Pluripotent Stem Cells: Advances in Chondrogenic Differentiation and Articular Cartilage Regeneration
    Rosa M. Guzzo
    Michael B. O’Sullivan
    Current Molecular Biology Reports, 2016, 2 (3) : 113 - 122
  • [33] 3D Printed Chondrogenic Functionalized PGS Bioactive Scaffold for Cartilage Regeneration
    Wang, Sinan
    Luo, Bin
    Bai, Baoshuai
    Wang, Qianyi
    Chen, Hongying
    Tan, Xiaoyan
    Tang, Zhengya
    Shen, Sisi
    Zhou, Hengxing
    You, Zhengwei
    Zhou, Guangdong
    Lei, Dong
    ADVANCED HEALTHCARE MATERIALS, 2023, 12 (27)
  • [34] 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation
    Smeriglio, Piera
    Lai, Janice H.
    Yang, Fan
    Bhutani, Nidhi
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2015, (104):
  • [35] Enhancement of the chondrogenic differentiation of mesenchymal stem cells and cartilage repair by ghrelin
    Fan, Litong
    Chen, Jiaqing
    Tao, Yanmeng
    Heng, Boon Chin
    Yu, Jiakuo
    Yang, Zheng
    Ge, Zigang
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2019, 37 (06) : 1387 - 1397
  • [36] RETRACTED: Value of 3D Printed PLGA Scaffolds for Cartilage Defects in Terms of Repair (Retracted Article)
    Fan, Longkun
    Teng, Wei
    He, Jinqiu
    Wang, Dongni
    Liu, Chunhui
    Zhao, Yujia
    Zhang, Limin
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [37] HBC-nanofiber hydrogel scaffolds with 3D printed internal microchannels for enhanced cartilage differentiation
    Liu, Xiaoyun
    Song, Shaoshuai
    Huang, Jie
    Fu, Han
    Ning, Xinyu
    He, Yong
    Zhang, Zhijun
    JOURNAL OF MATERIALS CHEMISTRY B, 2020, 8 (28) : 6115 - 6127
  • [38] 3D printed hydroxyapatite composite scaffolds with enhanced mechanical properties
    Chen, Shangsi
    Shi, Yufei
    Zhang, Xin
    Ma, Jun
    CERAMICS INTERNATIONAL, 2019, 45 (08) : 10991 - 10996
  • [39] Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration
    Kim, Yoontae
    Lee, Eun-Jin
    Davydov, Albert, V
    Frukhtbeyen, Stanislav
    Seppala, Jonathan E.
    Takagi, Shozo
    Chow, Laurence
    Alimperti, Stella
    BIOMEDICAL MATERIALS, 2021, 16 (04)
  • [40] 3D-printed hydroxyapatite (HA) scaffolds combined with exos from BMSCs cultured in 3D HA scaffolds to repair bone defects
    Gao, Wenling
    Deng, Jintao
    Ren, Jianhua
    Zhang, Wenhui
    Wang, Zhe
    He, Ronghan
    Wang, Kun
    Shi, Xuetao
    Liang, Tangzhao
    COMPOSITES PART B-ENGINEERING, 2022, 247