3D printed gelatin/hydroxyapatite scaffolds for stem cell chondrogenic differentiation and articular cartilage repair

被引:95
作者
Huang, Jianghong [1 ,2 ,3 ]
Huang, Zhiwang [1 ]
Liang, Yujie [2 ,3 ,4 ]
Yuan, Weihao [5 ]
Bian, Liming [5 ]
Duan, Li [1 ,6 ]
Rong, Zhibin [7 ]
Xiong, Jianyi [1 ]
Wang, Daping [1 ,6 ,8 ]
Xia, Jiang [2 ,3 ]
机构
[1] Shenzhen Univ, Dept Orthoped,Hlth Sci Ctr,Shenzhen Peoples Hosp, Guangdong Artificial Intelligence Biomed Innovat, Shenzhen Intelligent Orthopaed & Biomed Innovat P, Shenzhen 518035, Peoples R China
[2] Chinese Univ Hong Kong, Sch Life Sci, Dept Chem, Shatin, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong, Ctr Cell & Dev Biol, Sch Life Sci, Shatin, Hong Kong, Peoples R China
[4] Shenzhen Kangning Hosp, Shenzhen Mental Hlth Ctr, Shenzhen 518020, Guangdong, Peoples R China
[5] Chinese Univ Hong Kong, Dept Biomed Engn, Shatin, Hong Kong, Peoples R China
[6] Guangzhou Med Univ, Guangzhou 511436, Guangdong, Peoples R China
[7] Shijiazhuang Matern & Child Hlth Hosp, Shijiazhuang 050093, Hebei, Peoples R China
[8] Southern Univ Sci & Technol, Dept Biomed Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Stem cells;
D O I
10.1039/d0bm02103b
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Acute injury of the articular cartilage can lead to chronic disabling conditions because of the limited self-repair capability of the cartilage. Implantation of stem cells at the injury site is a viable treatment, but requires a scaffold with a precisely controlled geometry and porosity in the 3D space, high biocompatibility, and the capability of promoting chondrogenic differentiation of the implanted stem cells. Here we report the development of gelatin/hydroxyapatite (HAP) hybrid materials by microextrusion 3D bioprinting and enzymatic cross-linking as the scaffold for human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs). The scaffold supports the adhesion, growth, and proliferation of hUCB-MSCs and induces their chondrogenic differentiation in vitro. Doping HAP in the gelatin scaffold increases the fluidity of the hydrogel, improves the gelation kinetics and the rheological properties, and allows better control over 3D printing. Implanting the hUCB-MSC-laden scaffold at the injury site of the articular cartilage effectively repairs the cartilage defects in a pig model. Altogether, this work demonstrates the 3D printing of gelatin-based scaffold materials for hUCB-MSCs to repair cartilage defects as a potential treatment of articular cartilage injury.
引用
收藏
页码:2620 / 2630
页数:11
相关论文
共 52 条
[1]   Functional outcomes after patellar autologous osteochondral transplantation [J].
Astur, Diego Costa ;
Bernardes, Adilio ;
Castro, Saulo ;
Arliani, Gustavo Goncalves ;
Kaleka, Camila Cohen ;
Astur, Nelson ;
Cohen, Moises .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2017, 25 (10) :3084-3091
[2]  
Bello AB, 2020, TISSUE ENG PART B-RE, V26, P164, DOI [10.1089/ten.teb.2019.0256, 10.1089/ten.TEB.2019.0256]
[3]   A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering [J].
Billiet, Thomas ;
Vandenhaute, Mieke ;
Schelfhout, Jorg ;
Van Vlierberghe, Sandra ;
Dubruel, Peter .
BIOMATERIALS, 2012, 33 (26) :6020-6041
[4]   Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release [J].
Bini, Rafael A. ;
Silva, Monica F. ;
Varanda, Laudemir C. ;
da Silva, Marcelo A. ;
Dreiss, Cecile A. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2017, 157 :191-198
[5]   Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity [J].
Blaeser, Andreas ;
Campos, Daniela Filipa Duarte ;
Puster, Uta ;
Richtering, Walter ;
Stevens, Molly M. ;
Fischer, Horst .
ADVANCED HEALTHCARE MATERIALS, 2016, 5 (03) :326-333
[6]   Successful osteoconduction but limited cartilage tissue quality following osteochondral repair by a cell-free multilayered nano-composite scaffold at the knee [J].
Brix, Martin ;
Kaipel, Martin ;
Kellner, Richard ;
Schreiner, Markus ;
Apprich, Sebastian ;
Boszotta, Harald ;
Windhager, Reinhard ;
Domayer, Stephan ;
Trattnig, Siegfried .
INTERNATIONAL ORTHOPAEDICS, 2016, 40 (03) :625-632
[7]   Enzymatic stabilization of gelatin-based scaffolds [J].
Broderick, EP ;
O'Halloran, DM ;
Rochev, YA ;
Griffin, M ;
Collighan, RJ ;
Pandit, AS .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2005, 72B (01) :37-42
[8]   Combination of Collagen-Based Scaffold and Bioactive Factors Induces Adipose-Derived Mesenchymal Stem Cells Chondrogenic Differentiation In vitro [J].
Calabrese, Giovanna ;
Forte, Stefano ;
Gulino, Rosario ;
Cefali, Francesco ;
Figallo, Elisa ;
Salvatorelli, Lucia ;
Maniscalchi, Eugenia T. ;
Angelico, Giuseppe ;
Parenti, Rosalba ;
Gulisano, Massimo ;
Memeo, Lorenzo ;
Giuffrida, Raffaella .
FRONTIERS IN PHYSIOLOGY, 2017, 8
[9]   Supporting Biomaterials for Articular Cartilage Repair [J].
Campos, Daniela Filipa Duarte ;
Drescher, Wolf ;
Rath, Bjoern ;
Tingart, Markus ;
Fischer, Horst .
CARTILAGE, 2012, 3 (03) :205-221
[10]   Enzymatic crosslinked gelatin 3D scaffolds for bone tissue engineering [J].
Carmen Echave, Mari ;
Pimenta-Lopes, Carolina ;
Pedraz, Jose Luis ;
Mehrali, Mehdi ;
Dolatshahi-Pirouz, Alireza ;
Ventura, Fransesc ;
Orive, Gorka .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2019, 562 :151-161