High Capacity Silicon Electrodes with Nafion as Binders for Lithium-Ion Batteries

被引:87
作者
Xu, Jiagang [1 ]
Zhang, Qinglin [1 ]
Cheng, Yang-Tse [1 ]
机构
[1] Univ Kentucky, Dept Chem & Mat Engn, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
SI NEGATIVE ELECTRODES; FLUOROETHYLENE CARBONATE; EXCHANGE MEMBRANES; HIGH-PERFORMANCE; COMPOSITE ELECTRODES; CYCLE LIFE; ANODES; FILM; CHEMISTRY; CELLULOSE;
D O I
10.1149/2.0261603jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Silicon is capable of delivering a high theoretical specific capacity of 3579 mAh g(-1) which is about 10 times higher than that of the state-of-the-art graphite based negative electrodes for lithium-ion batteries. However, the poor cycle life of silicon electrodes, caused by the large volumetric strain during cycling, limits the commercialization of silicon electrodes. As one of the essential components, the polymeric binder is critical to the performance and durability of lithium-ion batteries as it keeps the integrity of electrodes, maintains conductive path and must be stable in the electrolyte. In this work, we demonstrate that electrodes consisting of silicon nanoparticles mixed with commercially available Nafion and ion-exchanged Nafion can maintain a high specific capacity over 2000 mAh g(-1) cycled between 1.0 V and 0.01 V. For comparison, the capacity of electrodes made of the same silicon nanoparticles mixed with a traditional binder, polyvinylidene fluoride (PVDF), fades rapidly. In addition, stable cycling at 1C rate for more than 500 cycles is achieved by limiting the lithiation capacity to 1200 mAh g(-1). (C) The Author(s) 2015 Published by ECS. All rights reserved.
引用
收藏
页码:A401 / A405
页数:5
相关论文
共 33 条
[1]  
[Anonymous], 2015, ADV ENERGY MAT
[2]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[3]   Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries [J].
Buqa, H. ;
Holzapfel, M. ;
Krumeich, F. ;
Veit, C. ;
Novak, P. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :617-622
[4]   High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes [J].
Cai, Zhijun ;
Liu, Yanbo ;
Liu, Sisi ;
Li, Lei ;
Zhang, Yongming .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5690-5693
[5]   Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers [J].
Chen, ZH ;
Christensen, L ;
Dahn, JR .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (11) :919-923
[6]   Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries [J].
Chockla, Aaron M. ;
Bogart, Timothy D. ;
Hessel, Colin M. ;
Klavetter, Kyle C. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (34) :18079-18086
[7]   Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode [J].
Choi, Nam-Soon ;
Yew, Kyoung Han ;
Lee, Kyu Youl ;
Sung, Minseok ;
Kim, Ho ;
Kim, Sung-Soo .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1254-1259
[8]   Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes [J].
Etacheri, Vinodkumar ;
Haik, Ortal ;
Goffer, Yossi ;
Roberts, Gregory A. ;
Stefan, Ionel C. ;
Fasching, Rainier ;
Aurbach, Doron .
LANGMUIR, 2012, 28 (01) :965-976
[9]   Ammonia-assisted dehydrofluorination between PVDF and Nafion for highly selective and low-cost proton exchange membranes: a possible way to further strengthen the commercialization of Nafion [J].
Feng, Kai ;
Tang, Beibei ;
Wu, Peiyi .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (24) :12609-12615
[10]   Studies of lithium-exchanged nafion as an electrode binder for alloy negatives in lithium-ion batteries [J].
Garsuch, Rita R. ;
Le, Dinh-Ba ;
Garsuch, Arnd ;
Li, Jing ;
Wang, Steven ;
Farooq, Amjad ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (10) :A721-A724