Hybrid subconvexity bounds for twisted L-functions on GL(3)

被引:15
作者
Huang, Bingrong [1 ,2 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
[2] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
中国国家自然科学基金;
关键词
L-functions; subconvexity; GL(3); twisted; quadratic character;
D O I
10.1007/s11425-017-9428-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let q be a large prime, and chi the quadratic character modulo q. Let phi be a self-dual Hecke-Maass cusp form for SL(3, DOUBLE-STRUCK CAPITAL Z), and u(j) a Hecke-Maass cusp form for CYRILLIC CAPITAL LETTER GHE(0)(q) subset of SL(2, DOUBLE-STRUCK CAPITAL Z) with spectral parameter t(j). We prove, for the first time, some hybrid subconvexity bounds for the twisted L-functions on GL(3), such as L(1/2,phi xujx chi)MUCH LESS-THAN phi,epsilon(q(1+|tj|))3/2-theta+epsilon,L(1/2+it,phi x chi)MUCH LESS-THAN phi,epsilon(q(1+|t|))3/4-theta/2+epsilon,$$L\left( {1/2,\phi \times {u_j} \times \chi } \right){ \ll _{\phi ,\varepsilon }}{\left( {q\left( {1 + \left| {{t_j}} \right|} \right)} \right)<^>{3/2 - \theta + \varepsilon }},L\left( {1/2 + it,\phi \times \chi } \right){ \ll _{\phi ,\varepsilon }}{\left( {q\left( {1 + \left| t \right|} \right)} \right)<^>{3/4 - \theta /2 + \varepsilon }},$$\end{document} for any epsilon > 0, where theta = 1/23 is admissible. The proofs depend on the first moment of a family of L-functions in short intervals. In order to bound this moment, we first use the approximate functional equations, the Kuznetsov formula, and the Voronoi formula to transform it to a complicated summation; and then we apply different methods to estimate it, which give us strong bounds in different aspects. We also use the stationary phase method and the large sieve inequalities.
引用
收藏
页码:443 / 478
页数:36
相关论文
共 29 条
[1]   DISTRIBUTION OF MASS OF HOLOMORPHIC CUSP FORMS [J].
Blomer, Valentin ;
Khan, Rizwanur ;
Young, Matthew .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (14) :2609-2644
[2]   SUBCONVEXITY FOR TWISTED L-FUNCTIONS ON GL(3) [J].
Blomer, Valentin .
AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (05) :1385-1421
[3]  
Burgess D.A., 1963, Proc. Lond. Math. Soc, V3, P524
[4]   The cubic moment of central values of automorphic L-functions [J].
Conrey, JB ;
Iwaniec, H .
ANNALS OF MATHEMATICS, 2000, 151 (03) :1175-1216
[5]   BOUNDS FOR AUTOMORPHIC L-FUNCTIONS .2. [J].
DUKE, W ;
FRIEDLANDER, JB ;
IWANIEC, H .
INVENTIONES MATHEMATICAE, 1994, 115 (02) :219-239
[6]   LARGE SIEVE DENSITY ESTIMATE NEAR SIGMA=1 [J].
GALLAGHER, PX .
INVENTIONES MATHEMATICAE, 1970, 11 (04) :329-+
[7]  
Goldfeld D, 2006, CAMBRIDGE STUD ADV M, V99
[8]  
Goldfeld D, 2006, INT MATH RES NOTICES, V2006
[9]   HYBRID BOUNDS FOR DIRICHLET L-FUNCTIONS [J].
HEATHBROWN, DR .
INVENTIONES MATHEMATICAE, 1978, 47 (02) :149-170
[10]   HYBRID BOUNDS FOR DIRICHLET L-FUNCTIONS .2. [J].
HEATHBROWN, DR .
QUARTERLY JOURNAL OF MATHEMATICS, 1980, 31 (122) :157-167