Neuroinflammation and Functional Connectivity in Alzheimer's Disease: Interactive Influences on Cognitive Performance

被引:152
作者
Passamonti, L. [1 ,2 ]
Tsvetanov, K. A. [2 ]
Jones, P. S. [2 ]
Bevan-Jones, W. R. [3 ]
Arnold, R. [2 ]
Borchert, R. J. [2 ]
Mak, E. [3 ]
Su, L. [3 ]
O'Brien, J. T. [3 ]
Rowe, J. B. [2 ,4 ]
机构
[1] CNR, IBFM, I-20090 Milan, Italy
[2] Univ Cambridge, Dept Clin Neurosci, Cambridge CB2 0SZ, England
[3] Univ Cambridge, Dept Psychiat, Cambridge CB2 0SZ, England
[4] MRC, Cognit & Brain Sci Unit, Cambridge CB2 7EF, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
C-11]PK11195; Alzheimer's disease; functional connectivity; independent component analysis; neuroinflammation; PET; NONSTEROIDAL ANTIINFLAMMATORY DRUGS; MICROGLIAL ACTIVATION; PARKINSONS-DISEASE; PET; BINDING; REGRESSION; REGISTRATION; PROGRESSION; NAPROXEN; RISK;
D O I
10.1523/JNEUROSCI.2574-18.2019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuroinflammation is a key part of the etio-pathogenesis of Alzheimer's disease (AD). We tested the relationship between neuroinflammation and the disruption of functional connectivity in large-scale networks, and their joint influence on cognitive impairment. We combined [C-11]PK11195 positron emission tomography (PET) and resting-state functional magnetic resonance imaging (rs-fMRI) in 28 patients (12 females/16 males) with clinical diagnosis of probable AD or mild cognitive impairment with positive PET biomarker for amyloid, and 14 age-, sex-, and education-matched healthy controls (8 females/6 males). Source-based "inflammetry" was used to extract principal components of [C-11]PRI1195 PET signal variance across all participants. rs-fMRI data were preprocessed via independent component analyses to classify neuronal and non-neuronal signals. Multiple linear regression models identified sources of signal covariance between neuroinflammation and brain connectivity profiles, in relation to the diagnostic group (patients, controls) and cognitive status. Patients showed significantly higher [C-11]PK11195 binding relative to controls, in a distributed spatial pattern including the hippocampus, frontal, and inferior temporal cortex. Patients with enhanced loading on this [C-11] PK11195 binding distribution displayed diffuse abnormal functional connectivity. The expression of a stronger association between such abnormal connectivity and higher levels of neuroinflammation correlated with worse cognitive deficits. Our study suggests that neuroinflammation relates to the pathophysiological changes in network function that underlie cognitive deficits in Alzheimer's disease. Neuroinflammation, and its association with functionally-relevant reorganization of brain networks, is proposed as a target for emerging immunotherapeutic strategies aimed at preventing or slowing the emergence of dementia.
引用
收藏
页码:7218 / 7226
页数:9
相关论文
共 56 条
[1]  
[Anonymous], 1978, Outliers in statistical data
[2]   A fast diffeomorphic image registration algorithm [J].
Ashburner, John .
NEUROIMAGE, 2007, 38 (01) :95-113
[3]   In vivo evidence for pre-symptomatic neuroinflammation in a MAPT mutation carrier [J].
Bevan-Jones, W. Richard ;
Cope, Thomas E. ;
Jones, P. Simon ;
Passamonti, Luca ;
Hong, Young T. ;
Fryer, Tim ;
Arnold, Robert ;
Coles, Jonathan P. ;
Aigbirhio, Franklin I. ;
O'Brien, John T. ;
Rowe, James B. .
ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2019, 6 (02) :373-378
[4]   Neuroimaging of Inflammation in Memory and Related Other Disorders (NIMROD) study protocol: a deep phenotyping cohort study of the role of brain inflammation in dementia, depression and other neurological illnesses [J].
Bevan-Jones, W. Richard ;
Surendranathan, Ajenthan ;
Passamonti, Luca ;
Rodriguez, Patricia Vazquez ;
Arnold, Robert ;
Mak, Elijah ;
Su, Li ;
Coles, Jonathan P. ;
Fryer, Tim D. ;
Hong, Young T. ;
Williams, Guy ;
Aigbirhio, Franklin ;
Rowe, James B. ;
O'Brien, John T. .
BMJ OPEN, 2017, 7 (01)
[5]   Do nonsteroidal antiinflammatory drugs reduce the risk of Alzheimer's disease? [J].
Breitner, JCS ;
Zandi, PP .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 345 (21) :1567-1568
[6]   In-vivo measurement of activated microglia in dementia [J].
Cagnin, A ;
Brooks, DJ ;
Kennedy, AM ;
Gunn, RN ;
Myers, R ;
Turkheimer, FE ;
Jones, T ;
Banati, RB .
LANCET, 2001, 358 (9280) :461-467
[7]   A method for making group inferences from functional MRI data using independent component analysis [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 14 (03) :140-151
[8]   Microglia, Amyloid, and Glucose Metabolism in Parkinson's Disease with and without Dementia [J].
Edison, Paul ;
Ahmed, Imtiaz ;
Fan, Zhen ;
Hinz, Rainer ;
Gelosa, Giorgio ;
Chaudhuri, K. Ray ;
Walker, Zuzana ;
Turkheimer, Federico E. ;
Brooks, David J. .
NEUROPSYCHOPHARMACOLOGY, 2013, 38 (06) :938-949
[9]   Microglia, amyloid, and cognition in Alzheimer's disease: An [11C](R)PK11195-PET and [11C]PIB-PET study [J].
Edison, Paul ;
Archer, Hilary A. ;
Gerhard, Alexander ;
Hinz, Rainer ;
Pavese, Nicola ;
Turkheimer, Federico E. ;
Hammers, Alexander ;
Tai, Yen Fong ;
Fox, Nick ;
Kennedy, Angus ;
Rossor, Martin ;
Brooks, David J. .
NEUROBIOLOGY OF DISEASE, 2008, 32 (03) :412-419
[10]   Influence of microglial activation on neuronal function in Alzheimer's and Parkinson's disease dementia [J].
Fan, Zhen ;
Aman, Yahyah ;
Ahmed, Imtiaz ;
Chetelat, Gael ;
Landeau, Brigitte ;
Chaudhuri, K. Ray ;
Brooks, David J. ;
Edison, Paul .
ALZHEIMERS & DEMENTIA, 2015, 11 (06) :608-621