Effects of diversity control in single-objective and multi-objective genetic algorithms

被引:36
作者
Chaiyaratana, Nachol
Piroonratana, Theera
Sangkawelert, Nuntapon
机构
[1] King Mongkuts Inst Technol N Bangkok, Res & Dev Ctr Intelligent Syst, Bangkok 10800, Thailand
[2] King Mongkuts Inst Technol N Bangkok, Dept Prod Engn, Bangkok 10800, Thailand
[3] King Mongkuts Inst Technol N Bangkok, Dept Elect Engn, Bangkok 10800, Thailand
关键词
benchmarking; diversity control; multi-objective genetic algorithm; single-objective genetic algorithm;
D O I
10.1007/s10732-006-9003-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper covers an investigation on the effects of diversity control in the search performances of single-objective and multi-objective genetic algorithms. The diversity control is achieved by means of eliminating duplicated individuals in the population and dictating the survival of non-elite individuals via either a deterministic or a stochastic selection scheme. In the case of single-objective genetic algorithm, onemax and royal road R-1 functions are used during benchmarking. In contrast, various multi-objective benchmark problems with specific characteristics are utilised in the case of multi-objective genetic algorithm. The results indicate that the use of diversity control with a correct parameter setting helps to prevent premature convergence in single-objective optimisation. Furthermore, the use of diversity control also promotes the emergence of multi-objective solutions that are close to the true Pareto optimal solutions while maintaining a uniform solution distribution along the Pareto front.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 30 条
[1]  
Abbass HA, 2003, LECT NOTES COMPUT SC, V2632, P391
[2]  
Ackley D. H., 1987, CONNECTIONIST MACHIN
[3]  
[Anonymous], 1989, THESIS VANDERBILT U
[4]  
Boonlong K., 2004, International Journal of Computational Intelligence and Applications, V4, P321, DOI 10.1142/S1469026804001367
[5]  
BOONLONG K, 2002, 2002 ASME INT MECH E
[6]  
Deb K, 2002, IEEE C EVOL COMPUTAT, P825, DOI 10.1109/CEC.2002.1007032
[7]  
Deb K, 2004, ADV INFO KNOW PROC, P105
[8]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[9]  
Deb K., 2001, Multi-Objective Optimization using Evolutionary Algorithms
[10]  
Eshelman L. J., 1991, FDN GENETIC ALGORITH, V1, P265, DOI DOI 10.1016/B978-0-08-050684-5.50020-3