Bilinear optimal control of a Schrodinger equation

被引:25
作者
Cancès, E
Le Bris, C
Pilot, M
机构
[1] Ecole Natl Ponts & Chaussees, Cermics, F-77455 Marne La Vallee, France
[2] Ecole Normale Super, F-75230 Paris 05, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 2000年 / 330卷 / 07期
关键词
D O I
10.1016/S0764-4442(00)00227-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study in this Note a bilinear optimal control problem for a Schrodinger equation with a nonlinearity of Hartree type, which models the behaviour of an atom subjected to an electric field. We show that the time-dependent equation is well posed and that there exists an optimal control. (C) 2000 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:567 / 571
页数:5
相关论文
共 9 条
[1]  
Butkovskiy AG, 1990, MATH ITS APPL
[2]   On the time-dependent Hartree-Fock equations coupled with a classical nuclear dynamics [J].
Cancès, E ;
Le Bris, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (07) :963-990
[3]  
DION C, UNPUB
[4]   ON THE SCHRODINGER-EQUATION WITH TIME-DEPENDENT ELECTRIC-FIELDS [J].
IORIO, RJ ;
MARCHESIN, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1984, 96 :117-134
[5]  
KAVIAN O, UNPUB
[6]  
KOBAYASHI M, 1998, SIAM NEWS, V24
[7]  
LEBRIS C, IN PRESS ESAIM P
[8]  
PILOT M, THESIS
[9]   COHERENT CONTROL OF QUANTUM DYNAMICS - THE DREAM IS ALIVE [J].
WARREN, WS ;
RABITZ, H ;
DAHLEH, M .
SCIENCE, 1993, 259 (5101) :1581-1589