Weighted integral inequalities with the geometric mean operator

被引:56
作者
Persson, LE [1 ]
Stepanov, VD
机构
[1] Univ Lulea, Dept Math, S-97187 Lulea, Sweden
[2] Russian Acad Sci, Ctr Comp, Far Eastern Branch, Khabarovsk 680042, Russia
关键词
geometric mean operator; Hardy inequalities;
D O I
10.1080/1025583021000022531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The geometric mean operator is defined by Gf(x) = exp(1/xintegral(0)(x) log f(t)dt). A precise two-sided estimate of the norm parallel toGparallel to = sup(fnot equal0) parallel toGfparallel toL(p)(q)/parallel tofparallel toL(v)(p) for 0 < p, g less than or equal to infinity is given and some applications and extensions are pointed out.
引用
收藏
页码:727 / 746
页数:20
相关论文
共 14 条
[1]  
BLISS GA, 1930, J LOND MATH SOC, V5, P40
[2]  
Carleman T., 1923, C FAITES CINQUIEMECO, P181
[3]   INEQUALITIES RELATED TO HARDY AND HEINIG [J].
COCHRAN, JA ;
LEE, CS .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1984, 96 (JUL) :1-7
[4]  
HEINIG HP, 1990, TEUB TEXT M, V119, P42
[5]   SOME EXTENSIONS OF HARDYS INEQUALITY [J].
HEINIG, HP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (04) :698-713
[6]   Carleman-Knopp type inequalities via Hardy inequalities [J].
Jain, P ;
Persson, LE ;
Wedestig, A .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (03) :343-355
[7]  
Jain P., 2000, FUNCTION SPACES APPL, P117
[8]  
Knopp K., 1928, J. London Math. Soc., V3, P205, DOI DOI 10.1112/JLMS/S1-3.3.205
[10]   ON THE BEST CONSTANT IN WEIGHTED INEQUALITIES FOR RIEMANN-LIOUVILLE INTEGRALS [J].
MANAKOV, VM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1992, 24 :442-448