An asymptotic solution of the problem of nonlinear waves in a viscous liquid

被引:7
作者
Belonozhko, DF [1 ]
Grigor'ev, AI [1 ]
Shiryaeva, SO [1 ]
机构
[1] Yaroslavl State Univ, Yaroslavl, Russia
关键词
D O I
10.1134/1.1519010
中图分类号
O59 [应用物理学];
学科分类号
摘要
A strict solution of the problem of temporal evolution of the shape of a periodic wave on the surface of a viscous infinitely deep liquid is obtained for the first time in an approximation quadratic in the wave amplitude. (C) 2002 MAIK "Nauka/Interperiodica".
引用
收藏
页码:795 / 799
页数:5
相关论文
共 14 条
[1]  
[Anonymous], 1959, WATER WAVES
[2]   Instability of the stressed surface of a highly viscous liquid [J].
Belonozhko, DF ;
Grigor'ev, AI .
TECHNICAL PHYSICS LETTERS, 1999, 25 (11) :884-886
[3]   Nonlinear gravity-capillary waves with forcing and dissipation [J].
Fedorov, AV ;
Melville, WK .
JOURNAL OF FLUID MECHANICS, 1998, 354 :1-42
[4]   Theory of water waves derived from a Lagrangian. Part 1. Standing waves [J].
Longuet-Higgins, MS .
JOURNAL OF FLUID MECHANICS, 2000, 423 :275-291
[5]  
MINDLIN IM, 1994, IZV MATH+, P135
[6]   THIRD-HARMONIC RESONANCE IN INTERACTION OF CAPILLARY AND GRAVITY WAVES [J].
NAYFEH, AH .
JOURNAL OF FLUID MECHANICS, 1971, 48 (JUL28) :385-&
[7]  
NESTEROV SV, 1995, IZV MATH+, P116
[8]  
Shiryaeva S. O., 1996, Technical Physics Letters, V22, P173
[9]   Characteristics of the capillary motions of surfactant solutions with a charged free surface [J].
Shiryaeva, SO ;
Belonozhko, DF ;
Grigor'ev, AI .
TECHNICAL PHYSICS, 1998, 43 (02) :151-158
[10]  
SHIRYAEVA SO, 2001, 31 IMI RAN