Minimum distance parameter estimation for Ornstein-Uhlenbeck processes driven by Levy process

被引:8
作者
Diop, Aliou [2 ]
Yode, Armel Fabrice [1 ]
机构
[1] Univ Cocody, LMAI, Abidjan, Cote Ivoire
[2] Univ Gaston Berger, LERSTAD, St Louis, Senegal
关键词
D O I
10.1016/j.spl.2009.09.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the minimum Skorohod distance estimate theta(epsilon)* of the parameter theta of a stochastic differential equation dX(t) = theta X-t dt + epsilon dZ(t), X-0 = x(0) where {Z(t), 0 <= t <= T} is a centered Levy process, epsilon is an element of (0, 1]. Its consistency and its limit distribution are studied for fixed T, when epsilon -> 0. Furthermore, the asymptotic law of its limit distribution is studied for T -> infinity. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:122 / 127
页数:6
相关论文
共 6 条
[1]   Asymptotics of a minimum distance estimator of the parameter of the Ornstein-Uhlenbeck process [J].
Henaff, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08) :911-914
[2]  
Jurek Z., 1993, Operator-Limit Distributions in Probability Theory
[3]   ON MINIMUM L1-NORM ESTIMATE OF THE PARAMETER OF THE ORNSTEIN-UHLENBECK PROCESS [J].
KUTOYANTS, Y ;
PILIBOSSIAN, P .
STATISTICS & PROBABILITY LETTERS, 1994, 20 (02) :117-123
[4]  
Kutoyants Yu.A., 1994, Identification of Dynamical Systems with Small Moise
[6]  
Protter P., 1990, Stochastic Integration and Differential Equations