Patterned Hydrogenation of Graphene: Magnetic Quantum Dot Array

被引:34
作者
Wu, Menghao [1 ,2 ]
Wu, Xiaojun [1 ]
Gao, Yi [1 ]
Zeng, Xiao Cheng [1 ,2 ]
机构
[1] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA
[2] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA
关键词
LIGHT-EMITTING-DIODES; MOLECULES; SPIN;
D O I
10.1021/jp9086128
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We design a new class of chemically modified graphenes through selective hydrogenation, which contain an array of triangular carbon domains separated by hydrogenated carbon stripes. By using a density-functional theory method within the generalized gradient approximation in the Perdew-Burke-Ernzerhof functional form, we show that each carbon triangle possesses notable magnetic moment on the edges. The chemically patterned graphene can be also viewed as an array of semiconducting quantum dots, where the hydrogenated carbon stripes play the role of quantum confinement. By adjusting the width of hydrogenated carbon stripes or the length scale of uncoated carbon triangles, the magnetic moment, band gap, and optical properties of the selectively hydrogenated graphene can be tuned.
引用
收藏
页码:139 / 142
页数:4
相关论文
共 50 条
  • [21] A graphene quantum dot with a single electron transistor as an integrated charge sensor
    Wang, Lin-Jun
    Cao, Gang
    Tu, Tao
    Li, Hai-Ou
    Zhou, Cheng
    Hao, Xiao-Jie
    Su, Zhan
    Guo, Guang-Can
    Jiang, Hong-Wen
    Guo, Guo-Ping
    APPLIED PHYSICS LETTERS, 2010, 97 (26)
  • [22] Optically tunable nuclear magnetic resonance in a single quantum dot
    Makhonin, M. N.
    Chekhovich, E. A.
    Senellart, P.
    Lemaitre, A.
    Skolnick, M. S.
    Tartakovskii, A. I.
    PHYSICAL REVIEW B, 2010, 82 (16):
  • [23] Magnetic field sensing using a driven double quantum dot
    Giavaras, G.
    Wabnig, J.
    Lovett, B. W.
    Jefferson, J. H.
    Briggs, G. A. D.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (04) : 895 - 898
  • [24] Selective control of polarized emission from patterned GaN/AlN quantum dot ensembles on Si(111)
    Moshe, O.
    Rich, D. H.
    Damilano, B.
    Massies, J.
    APPLIED PHYSICS LETTERS, 2011, 98 (06)
  • [25] Single layer graphene electrodes for quantum dot-light emitting diodes
    Yan, Long
    Zhang, Yu
    Zhang, Xiaoyu
    Zhao, Jia
    Wang, Yu
    Zhang, Tieqiang
    Jiang, Yongheng
    Gao, Wenzhu
    Yin, Jingzhi
    Zhao, Jun
    Yu, William W.
    NANOTECHNOLOGY, 2015, 26 (13)
  • [26] Photosensitive ZnO-Graphene Quantum Dot Hybrid Nanocomposite for Optoelectronic Applications
    Aaryashree
    Biswas, Sagar
    Sharma, Pankaj
    Awasthi, Vishnu
    Sengar, Brajendra S.
    Das, Apurba K.
    Mukherjee, Shaibal
    CHEMISTRYSELECT, 2016, 1 (07): : 1503 - 1509
  • [27] Magnetostatic wave analog of integer quantum Hall state in patterned magnetic films
    Shindou, Ryuichi
    Ohe, Jun-ichiro
    PHYSICAL REVIEW B, 2014, 89 (05)
  • [28] Tunable Magnetic Coupling in Graphene Nanoribbon Quantum Dots
    Jacobse, Peter H.
    Sarker, Mamun
    Saxena, Anshul
    Zahl, Percy
    Wang, Ziyi
    Berger, Emma
    Aluru, Narayana R.
    Sinitskii, Alexander
    Crommie, Michael F.
    SMALL, 2024, 20 (30)
  • [29] All-Optical Electron Spin Quantum Computers Using Quantum Dot Array Formed By AFM Oxidation
    Ohshima, Toshio
    Song, Hai-Zhi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72
  • [30] Electron Propagation in Molybdenum Disulfide Quantum Dot in the Presence of Magnetic Flux
    Belouad, Abdelhadi
    Kamal, Abdellatif
    Houca, Rachid
    Choubabi, El Bouazzaoui
    Monkade, Mohamed
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2023, 211 (1-2) : 29 - 44