Measurements of elastic modulus and fracture toughness of an air plasma sprayed thermal barrier coating using micro-cantilever bending

被引:30
作者
Chen, Ying [1 ,4 ]
Zhang, Xun [1 ,5 ]
Zhao, Xiaofeng [2 ]
Markocsan, Nicolaie [3 ]
Nylen, Per [3 ]
Xiao, Ping [1 ,2 ]
机构
[1] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[2] Shanghai Jiao Tong Univ, Shanghai Key Lab Adv High Temp Mat & Precis Formi, Shanghai 200240, Peoples R China
[3] Univ West, Dept Engn Sci, Trollhattan, Sweden
[4] OxMet Technol, Oxford OX5 1PF, Oxon, England
[5] Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England
基金
英国工程与自然科学研究理事会;
关键词
Elastic modulus; Fracture toughness; Micro-cantilever bending; Microstructure; MECHANICAL-PROPERTIES; MICROSTRUCTURE; STRESS; MODEL;
D O I
10.1016/j.surfcoat.2019.05.031
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The elastic modulus and fracture toughness of an air plasma sprayed thermal barrier coating (APS TBC) were measured using the micro-cantilever bending technique. The micro-cantilevers were machined by a focused ion beam with their central arms either parallel or normal to the bond coat/topcoat interface. Such orientations allowed direct measurements of both the in-plane and out-of-plane elastic moduli as well as mode I fracture toughness by bending. The calculated elastic modulus along the in-plane and out-of-plane direction is similar to 144 GPa and similar to 110 GPa, respectively, suggesting that the APS TBC is elastically anisotropic at microscale. The derived mode I fracture toughness along the plane parallel to the interface is similar to 0.40 MPa root m. This relatively low toughness reflects the weak fracture resistance of the highly-flawed APS for short cracks at microscale. The measurements in this study can be incorporated into micromechanical life time prediction models of the APS TBCs.
引用
收藏
页码:12 / 20
页数:9
相关论文
共 28 条
[1]   Stress distributions in plasma-sprayed thermal barrier coatings as a function of interface roughness and oxide scale thickness [J].
Ahrens, M ;
Vassen, R ;
Stöver, D .
SURFACE & COATINGS TECHNOLOGY, 2002, 161 (01) :26-35
[2]   Small-scale characterisation of irradiated nuclear materials: Part II nanoindentation and micro-cantilever testing of ion irradiated nuclear materials [J].
Armstrong, D. E. J. ;
Hardie, C. D. ;
Gibson, J. S. K. L. ;
Bushby, A. J. ;
Edmondson, P. D. ;
Roberts, S. G. .
JOURNAL OF NUCLEAR MATERIALS, 2015, 462 :374-381
[3]  
Choi SR, 1998, CERAM ENG SCI PROC, V19, P293
[4]   Effect of sintering on mechanical properties of plasma-sprayed zirconia-based thermal barrier coatings [J].
Choi, SR ;
Zhu, DM ;
Miller, RA .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (10) :2859-2867
[5]  
Choi SR, 2004, INT J APPL CERAM TEC, V1, P330
[6]   Thermal-barrier coatings for more efficient gas-turbine engines [J].
Clarke, David R. ;
Oechsner, Matthias ;
Padture, Nitin P. .
MRS BULLETIN, 2012, 37 (10) :891-902
[7]   Materials design for the next generation thermal barrier coatings [J].
Clarke, DR ;
Levi, CG .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :383-417
[8]   Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams [J].
Di Maio, D ;
Roberts, SG .
JOURNAL OF MATERIALS RESEARCH, 2005, 20 (02) :299-302
[9]  
Gere J.M., 2004, MECH MATER, pp838
[10]   A synchrotron X-ray diffraction deconvolution method for the measurement of residual stress in thermal barrier coatings as a function of depth [J].
Li, C. ;
Jacques, S. D. M. ;
Chen, Y. ;
Daisenberger, D. ;
Xiao, P. ;
Markocsan, N. ;
Nylen, P. ;
Cernik, R. J. .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2016, 49 :1904-1911