Numerical analysis of an electrokinetic double-focusing injection technique for microchip CE

被引:11
作者
Zhuang, Gui-Sheng
Li, Gang
Jin, Qing-Hui
Zhao, Jian-Long
Yang, Meng-Su
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Shanghai 200050, Peoples R China
[2] Grad Univ, Chinese Acad Sci, Beijing, Peoples R China
[3] City Univ Hong Kong, Dept Biol & Chem, Kowloon, Hong Kong, Peoples R China
关键词
electrokinetic injection; microfluidics; numerical simulation; sample plug;
D O I
10.1002/elps.200600282
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The injection techniques in electrophoresis microchips play an important role in the sample-handling process, whose characteristics determine the separation performance achieved, and the shape of a sample plug delivered into the separation channel has a great impact on the high-quality separation performance as well. This paper describes a numerical investigation of different electrokinetic injection techniques to deliver a sample plug within electrophoresis microchips. A novel double-focusing injection system is designed and fabricated, which involves four accessory arm channels in which symmetrical focusing potentials are loaded to form a unique parallel electric field distribution in the intersection of injection channel and separation channel. The parallel electric field effectuates virtual walls to confine the spreading of a sample plug at the intersection and prevents sample leakage into separation channel during the dispensing step. The key features of this technique over other injection techniques are the abilities to generate regular and nondistorted shape of sample plugs and deliver the variable-volume sample plugs by electrokinetic focusing. The detection peak in the proposed injection system is uniform regardless of the position of the detection probe in the separation channel, and the peak resolution is greatly enhanced. Finally, the double-focusing injection technique shows the flexibility in detection position and ensures improved signal sensitivity with good peak resolution due to the delivered high-quality sample plug.
引用
收藏
页码:5009 / 5019
页数:11
相关论文
共 36 条
[1]   Finite element simulation of pinched pressure-driven flow injection in microchannels [J].
Bai, XX ;
Josserand, J ;
Jensen, H ;
Rossier, JS ;
Girault, HH .
ANALYTICAL CHEMISTRY, 2002, 74 (24) :6205-6215
[2]  
Berthold A, 2002, ELECTROPHORESIS, V23, P3511, DOI 10.1002/1522-2683(200210)23:20<3511::AID-ELPS3511>3.0.CO
[3]  
2-C
[4]   Microchip-based purification of DNA from biological samples [J].
Breadmore, MC ;
Wolfe, KA ;
Arcibal, IG ;
Leung, WK ;
Dickson, D ;
Giordano, BC ;
Power, ME ;
Ferrance, JP ;
Feldman, SH ;
Norris, PM ;
Landers, JP .
ANALYTICAL CHEMISTRY, 2003, 75 (08) :1880-1886
[5]   An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications [J].
Chabinyc, ML ;
Chiu, DT ;
McDonald, JC ;
Stroock, AD ;
Christian, JF ;
Karger, AM ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2001, 73 (18) :4491-4498
[6]  
Dolník V, 2000, ELECTROPHORESIS, V21, P41, DOI 10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO
[7]  
2-7
[8]   MANIPULATION OF SAMPLE FRACTIONS ON A CAPILLARY ELECTROPHORESIS CHIP [J].
EFFENHAUSER, CS ;
MANZ, A ;
WIDMER, HM .
ANALYTICAL CHEMISTRY, 1995, 67 (13) :2284-2287
[9]   GLASS CHIPS FOR HIGH-SPEED CAPILLARY ELECTROPHORESIS SEPARATIONS WITH SUBMICROMETER PLATE HEIGHTS [J].
EFFENHAUSER, CS ;
MANZ, A ;
WIDMER, HM .
ANALYTICAL CHEMISTRY, 1993, 65 (19) :2637-2642
[10]   Computer simulations of electrokinetic injection techniques in microfluidic devices [J].
Ermakov, SV ;
Jacobson, SC ;
Ramsey, JM .
ANALYTICAL CHEMISTRY, 2000, 72 (15) :3512-3517