Mechanisms Shaping the Membranes of Cellular Organelles

被引:329
|
作者
Shibata, Yoko [1 ,2 ]
Hu, Junjie [3 ]
Kozlov, Michael M. [4 ]
Rapoport, Tom A. [1 ,2 ]
机构
[1] Harvard Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[3] Nankai Univ, Coll Life Sci, Tianjin 300071, Peoples R China
[4] Tel Aviv Univ, Sackler Fac Med, Dept Physiol & Pharmacol, IL-69978 Tel Aviv, Israel
关键词
endoplasmic reticulum; mitochondria; caveolae; tubules; reticulons; dynamins; HEREDITARY SPASTIC PARAPLEGIA; DEPENDENT CONFORMATIONAL-CHANGES; TUBULAR ENDOPLASMIC-RETICULUM; NUCLEAR-PORE COMPLEXES; C-TERMINAL DOMAIN; MITOCHONDRIAL MORPHOLOGY; STRUCTURAL BASIS; BAR-DOMAIN; COPII VESICLE; ATP SYNTHASE;
D O I
10.1146/annurev.cellbio.042308.113324
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cellular organelles have characteristic morphologies that arise as a result of different local membrane curvatures. A striking example is the endoplasmic reticulum (ER), which consists of ER tubules with high curvature in cross-section, peripheral ER sheets with little curvature except at their edges and the nuclear envelope with low curvature except where the nuclear pores are inserted. The ER may be shaped by several mechanisms. ER tubules are often generated through their association with the cytoskeleton and stabilized by two families of integral membrane proteins, the reticulons and DPI /Yop1p. Similar to how curvature is generated in budding vesicles, these proteins may use scaffolding and hydrophobic insertion mechanisms to shape the lipid bilayer into tubules. In addition, proteins of the dynamin family may deform the ER membrane to generate a tubular network. Mechanisms affecting local membrane curvature may also shape peripheral ER sheets and the nuclear envelope as well as mitochondria and caveolae.
引用
收藏
页码:329 / 354
页数:26
相关论文
共 50 条
  • [31] INTERACTION OF XENOBIOTICS AND CELLULAR ORGANELLES
    MURAVYOV, RA
    FARMAKOLOGIYA I TOKSIKOLOGIYA, 1982, 45 (04): : 88 - 92
  • [32] Mechanisms shaping the role of ERK1/2 in cellular senescence
    Zou, Junrong
    Lei, Tingting
    Guo, Pei
    Yu, Jason
    Xu, Qichao
    Luo, Yunfei
    Ke, Rong
    Huang, Deqiang
    MOLECULAR MEDICINE REPORTS, 2019, 19 (02) : 759 - 770
  • [33] ENZYMOLOGY OF ORGANELLES AND MEMBRANES IN PLANT CELLS
    MATILE, P
    BERICHTE DER DEUTSCHEN BOTANISCHEN GESELLSCHAFT, 1969, 82 (5-6): : 397 - &
  • [34] FUNCTION OF ORGANELLES AND MEMBRANES DURING AGING
    HANSFORD, RG
    GERONTOLOGIST, 1983, 23 : 112 - 112
  • [35] Antidepressants enter cells, organelles, and membranes
    Blumenfeld, Zack
    Bera, Kallol
    Castren, Eero
    Lester, Henry A.
    NEUROPSYCHOPHARMACOLOGY, 2024, 49 (01) : 246 - 261
  • [36] Antidepressants enter cells, organelles, and membranes
    Zack Blumenfeld
    Kallol Bera
    Eero Castrén
    Henry A. Lester
    Neuropsychopharmacology, 2024, 49 (1) : 246 - 261
  • [37] In focus in Vienna: Microscopy and cellular organelles
    Stoeger-Pollach, Michael
    HISTOCHEMISTRY AND CELL BIOLOGY, 2022, 158 (03) : 199 - 201
  • [38] Measuring pH regulation in cellular organelles
    Machen, T
    Teter, K
    Chandy, G
    Giorgi, G
    Wu, M
    Lin, S
    Quinones, B
    Llopis, J
    Tsien, R
    Moore, HP
    FASEB JOURNAL, 1998, 12 (04): : A327 - A327
  • [39] Cooperative protein transport in cellular organelles
    Dmitrieff, S.
    Sens, P.
    PHYSICAL REVIEW E, 2011, 83 (04):
  • [40] Proteomics of organelles and large cellular structures
    John R. Yates III
    Annalyn Gilchrist
    Kathryn E. Howell
    John J. M. Bergeron
    Nature Reviews Molecular Cell Biology, 2005, 6 : 702 - 714