Mechanisms Shaping the Membranes of Cellular Organelles

被引:329
|
作者
Shibata, Yoko [1 ,2 ]
Hu, Junjie [3 ]
Kozlov, Michael M. [4 ]
Rapoport, Tom A. [1 ,2 ]
机构
[1] Harvard Univ, Sch Med, Howard Hughes Med Inst, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
[3] Nankai Univ, Coll Life Sci, Tianjin 300071, Peoples R China
[4] Tel Aviv Univ, Sackler Fac Med, Dept Physiol & Pharmacol, IL-69978 Tel Aviv, Israel
关键词
endoplasmic reticulum; mitochondria; caveolae; tubules; reticulons; dynamins; HEREDITARY SPASTIC PARAPLEGIA; DEPENDENT CONFORMATIONAL-CHANGES; TUBULAR ENDOPLASMIC-RETICULUM; NUCLEAR-PORE COMPLEXES; C-TERMINAL DOMAIN; MITOCHONDRIAL MORPHOLOGY; STRUCTURAL BASIS; BAR-DOMAIN; COPII VESICLE; ATP SYNTHASE;
D O I
10.1146/annurev.cellbio.042308.113324
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cellular organelles have characteristic morphologies that arise as a result of different local membrane curvatures. A striking example is the endoplasmic reticulum (ER), which consists of ER tubules with high curvature in cross-section, peripheral ER sheets with little curvature except at their edges and the nuclear envelope with low curvature except where the nuclear pores are inserted. The ER may be shaped by several mechanisms. ER tubules are often generated through their association with the cytoskeleton and stabilized by two families of integral membrane proteins, the reticulons and DPI /Yop1p. Similar to how curvature is generated in budding vesicles, these proteins may use scaffolding and hydrophobic insertion mechanisms to shape the lipid bilayer into tubules. In addition, proteins of the dynamin family may deform the ER membrane to generate a tubular network. Mechanisms affecting local membrane curvature may also shape peripheral ER sheets and the nuclear envelope as well as mitochondria and caveolae.
引用
收藏
页码:329 / 354
页数:26
相关论文
共 50 条
  • [21] Membranes and organelles - Editorial overview
    De Camilla, Pietro
    De Matteis, Maria Antonietta
    CURRENT OPINION IN CELL BIOLOGY, 2006, 18 (04) : 349 - 350
  • [22] Bioorthogonal Chemistry in Cellular Organelles
    Veronika Šlachtová
    Marek Chovanec
    Michal Rahm
    Milan Vrabel
    Topics in Current Chemistry, 2024, 382
  • [23] Counting your gold: comparing the relative labelling indices of cellular compartments in a mixture of organelles and membranes
    Mayhew, T. M.
    JOURNAL OF ANATOMY, 2007, 210 (05) : 634 - 635
  • [24] MUSCLE-CONTRACTION AND MOVEMENT OF CELLULAR ORGANELLES - ARE THERE 2 DIFFERENT TYPES OF MECHANISMS FOR THEIR GENERATION
    MOREL, JE
    BACHOUCHI, N
    JOURNAL OF THEORETICAL BIOLOGY, 1988, 132 (01) : 83 - 96
  • [25] From membranes to organelles: Emerging roles for dynamin-like proteins in diverse cellular processes
    Williams, Michelle
    Kim, Kyoungtae
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2014, 93 (07) : 267 - 277
  • [26] pH homeostasis of cellular organelles
    Demaurex, N
    NEWS IN PHYSIOLOGICAL SCIENCES, 2002, 17 : 1 - 5
  • [27] Genomics and Evolution of Cellular Organelles
    M. S. Odintsova
    N. P. Yurina
    Russian Journal of Genetics, 2005, 41 : 957 - 967
  • [28] Mechanical forces on cellular organelles
    Feng, Qian
    Kornmann, Benoit
    JOURNAL OF CELL SCIENCE, 2018, 131 (21)
  • [29] Bioorthogonal Chemistry in Cellular Organelles
    Slachtova, Veronika
    Chovanec, Marek
    Rahm, Michal
    Vrabel, Milan
    TOPICS IN CURRENT CHEMISTRY, 2024, 382 (01)
  • [30] Genomics and evolution of cellular organelles
    Odintsova, MS
    Yurina, NP
    RUSSIAN JOURNAL OF GENETICS, 2005, 41 (09) : 957 - 967