Penalized Maximum Likelihood Principle for Choosing Ridge Parameter

被引:7
|
作者
Tran, Minh Ngoc [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[2] Vietnam Natl Univ, Singapore, Singapore
关键词
Data-dependent penalty; Loss rank principle; Model selection; Penalized ML; Ridge parameter; Ridge regression; REGRESSION;
D O I
10.1080/03610910903061014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of choosing the ridge parameter. Two penalized maximum likelihood (PML) criteria based on a distribution-free and a data-dependent penalty function are proposed. These PML criteria can be considered as "continuous" versions of AIC. A systematic simulation is conducted to compare the suggested criteria to several existing methods. The simulation results strongly support the use of our method. The method is also applied to two real data sets.
引用
收藏
页码:1610 / 1624
页数:15
相关论文
共 50 条
  • [31] A penalized quasi-maximum likelihood method for variable selection in the spatial autoregressive model
    Liu, Xuan
    Chen, Jianbao
    Cheng, Suli
    SPATIAL STATISTICS, 2018, 25 : 86 - 104
  • [32] NORMAL MAXIMUM LIKELIHOOD, WEIGHTED LEAST SQUARES, AND RIDGE REGRESSION ESTIMATES
    Withers, Christopher S.
    Nadarajah, Saralees
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2012, 32 (01): : 11 - 24
  • [33] Nonconcave Penalized Likelihood With NP-Dimensionality
    Fan, Jianqing
    Lv, Jinchi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 5467 - 5484
  • [34] Variable selection using penalized empirical likelihood
    Ren YunWen
    Zhang XinSheng
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (09) : 1829 - 1845
  • [35] A Penalized Likelihood Method for Structural Equation Modeling
    Huang, Po-Hsien
    Chen, Hung
    Weng, Li-Jen
    PSYCHOMETRIKA, 2017, 82 (02) : 329 - 354
  • [36] Refining penalized ridge regression: a novel method for optimizing the regularization parameter in genomic prediction
    Montesinos-Lopez, Abelardo
    Montesinos-Lopez, Osval A.
    Lecumberry, Federico
    Fariello, Maria, I
    Montesinos-Lopez, Jose C.
    Crossa, Jose
    G3-GENES GENOMES GENETICS, 2024, 14 (12):
  • [37] Computational Method for Jackknifed Generalized Ridge Tuning Parameter based on Generalized Maximum Entropy
    Erdugan, Funda
    Akdeniz, Fikri
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2012, 41 (08) : 1411 - 1429
  • [38] New approaches for choosing the ridge parameters
    Al-Jararha, J.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (06): : 1625 - 1633
  • [39] Penalized quasi-likelihood estimation and model selection with parameters on the boundary of the parameter space
    Nielsen, Heino Bohn
    Rahbek, Anders
    ECONOMETRICS JOURNAL, 2024, 27 (01) : 107 - 125
  • [40] Effects of parameter estimation on maximum-likelihood bootstrap analysis
    Ripplinger, Jennifer
    Abdo, Zaid
    Sullivan, Jack
    MOLECULAR PHYLOGENETICS AND EVOLUTION, 2010, 56 (02) : 642 - 648