Penalized Maximum Likelihood Principle for Choosing Ridge Parameter

被引:7
|
作者
Tran, Minh Ngoc [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117546, Singapore
[2] Vietnam Natl Univ, Singapore, Singapore
关键词
Data-dependent penalty; Loss rank principle; Model selection; Penalized ML; Ridge parameter; Ridge regression; REGRESSION;
D O I
10.1080/03610910903061014
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of choosing the ridge parameter. Two penalized maximum likelihood (PML) criteria based on a distribution-free and a data-dependent penalty function are proposed. These PML criteria can be considered as "continuous" versions of AIC. A systematic simulation is conducted to compare the suggested criteria to several existing methods. The simulation results strongly support the use of our method. The method is also applied to two real data sets.
引用
收藏
页码:1610 / 1624
页数:15
相关论文
共 50 条
  • [21] Efficiency for Regularization Parameter Selection in Penalized Likelihood Estimation Of Misspecified Models
    Flynn, Cheryl J.
    Hurvich, Clifford M.
    Simonoff, Jeffrey S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2013, 108 (503) : 1031 - 1043
  • [22] ELM parameter estimation in view of maximum likelihood
    Yang, Lanzhen
    Tsang, Eric C. C.
    Wang, Xizhao
    Zhang, Chengling
    NEUROCOMPUTING, 2023, 557
  • [23] Marginal maximum likelihood estimation methods for the tuning parameters of ridge, power ridge, and generalized ridge regression
    Karabatsos, George
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (06) : 1632 - 1651
  • [24] SCAD-Ridge penalized likelihood estimators for ultra-high dimensional models
    Dong, Ying
    Song, Lixin
    Amin, Muhammad
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (02): : 423 - 436
  • [25] Mixture of Gaussian regressions model with logistic weights, a penalized maximum likelihood approach
    Montuelle, L.
    Le Pennec, E.
    ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 1661 - 1695
  • [26] Better Estimates of Genetic Covariance Matrices by "Bending'' Using Penalized Maximum Likelihood
    Meyer, Karin
    Kirkpatrick, Mark
    GENETICS, 2010, 185 (03) : 1097 - 1110
  • [27] Maximum penalized likelihood estimation in semiparametric mark-recapture-recovery models
    Michelot, Theo
    Langrock, Roland
    Kneib, Thomas
    King, Ruth
    BIOMETRICAL JOURNAL, 2016, 58 (01) : 222 - 239
  • [28] Hierarchical Bayes, maximum a posteriori estimators, and minimax concave penalized likelihood estimation
    Strawderman, Robert L.
    Wells, Martin T.
    Schifano, Elizabeth D.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 973 - 990
  • [29] Penalized Maximum Likelihood Estimation of Multi-layered Gaussian Graphical Models
    Lin, Jiahe
    Basu, Sumanta
    Banerjee, Moulinath
    Michailidis, George
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [30] Tuning Parameter Selector for the Penalized Likelihood Method in Multivariate Generalized Linear Models
    Wang, Xiaoguang
    Song, Lixin
    Cui, Jie
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (21) : 3873 - 3888