Causal Learning via Manifold Regularization

被引:0
作者
Hill, Steven M. [1 ]
Oates, Chris J. [2 ]
Blythe, Duncan A. [3 ]
Mukherjee, Sach [3 ]
机构
[1] Univ Cambridge, MRC Biostat Unit, Cambridge CB2 0SR, England
[2] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[3] German Ctr Neurodegenerat Dis, D-53127 Bonn, Germany
基金
英国医学研究理事会;
关键词
causal learning; manifold regularization; semi-supervised learning; interventional data; causal graphs; NETWORKS; INFERENCE; SELECTION; LATENT;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper frames causal structure estimation as a machine learning task. The idea is to treat indicators of causal relationships between variables as 'labels' and to exploit available data on the variables of interest to provide features for the labelling task. Background scientific knowledge or any available interventional data provide labels on some causal relationships and the remainder are treated as unlabelled. To illustrate the key ideas, we develop a distance-based approach (based on bivariate histograms) within a manifold regularization framework. We present empirical results on three different biological data sets (including examples where causal effects can be verified by experimental intervention), that together demonstrate the efficacy and general nature of the approach as well as its simplicity from a user's point of view.
引用
收藏
页数:32
相关论文
共 31 条
  • [1] A pan-cancer proteomic perspective on The Cancer Genome Atlas
    Akbani, Rehan
    Ng, Patrick Kwok Shing
    Werner, Henrica M. J.
    Shahmoradgoli, Maria
    Zhang, Fan
    Ju, Zhenlin
    Liu, Wenbin
    Yang, Ji-Yeon
    Yoshihara, Kosuke
    Li, Jun
    Ling, Shiyun
    Seviour, Elena G.
    Ram, Prahlad T.
    Minna, John D.
    Diao, Lixia
    Tong, Pan
    Heymach, John V.
    Hill, Steven M.
    Dondelinger, Frank
    Stadler, Nicolas
    Byers, Lauren A.
    Meric-Bernstam, Funda
    Weinstein, John N.
    Broom, Bradley M.
    Verhaak, Roeland G. W.
    Liang, Han
    Mukherjee, Sach
    Lu, Yiling
    Mills, Gordon B.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Belkin M, 2006, J MACH LEARN RES, V7, P2399
  • [3] Towards a theoretical foundation for Laplacian-based manifold methods
    Belkin, Mikhail
    Niyogi, Partha
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2008, 74 (08) : 1289 - 1308
  • [4] Generalization errors of Laplacian regularized least squares regression
    Cao Ying
    Chen DiRong
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (09) : 1859 - 1868
  • [5] LEARNING HIGH-DIMENSIONAL DIRECTED ACYCLIC GRAPHS WITH LATENT AND SELECTION VARIABLES
    Colombo, Diego
    Maathuis, Marloes H.
    Kalisch, Markus
    Richardson, Thomas S.
    [J]. ANNALS OF STATISTICS, 2012, 40 (01) : 294 - 321
  • [6] Cucker F, 2007, C MO AP C M, P1, DOI 10.1017/CBO9780511618796
  • [7] Fergus R., 2009, Advances in Neural Information Processing Systems, P522
  • [8] Grigor'yan A, 2006, CONTEMP MATH, V398, P93
  • [9] Hauser A, 2012, J MACH LEARN RES, V13, P2409
  • [10] Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling
    Hill, Steven M.
    Nesser, Nicole K.
    Johnson-Camacho, Katie
    Jeffress, Mara
    Johnson, Aimee
    Boniface, Chris
    Spencer, Simon E. F.
    Lu, Yiling
    Heiser, Laura M.
    Lawrence, Yancey
    Pande, Nupur T.
    Korkola, James E.
    Gray, Joe W.
    Mills, Gordon B.
    Mukherjee, Sach
    Spellman, Paul T.
    [J]. CELL SYSTEMS, 2017, 4 (01) : 73 - +