Profiling of somatic mutations and fusion genes in acute myeloid leukemia patients with FLT3-ITD or FLT3-TKD mutation at diagnosis reveals distinct evolutionary patterns

被引:16
作者
Guan, Wei [1 ]
Zhou, Lei [1 ]
Li, Yan [1 ,2 ]
Yang, Erna [3 ]
Liu, Yangyang [4 ]
Lv, Na [1 ,3 ]
Fu, Lin [5 ]
Ding, Yi [1 ]
Wang, Nan [1 ]
Fang, Nan [4 ]
Liu, Qian [4 ]
Wang, Binan [4 ]
Li, Fuwei [4 ]
Zhang, Juan [4 ]
Wang, Maoquan [6 ]
Wang, Lili [1 ]
Jing, Yu [1 ]
Li, Yonghui [3 ]
Yu, Li [1 ,3 ]
机构
[1] Chinese Peoples Liberat Army Gen Hosp, Dept Hematol, 28 Fuxing Rd, Beijing 100853, Peoples R China
[2] Peking Univ Third Hosp, Dept Hematol, 49 North Garden Rd, Beijing 100191, Peoples R China
[3] Shenzhen Univ, Gen Hosp,Hlth Sci Ctr, Carlson Int Canc Ctr,Dept Hematol & Oncol, Shenzhen Key Lab Precis Med Hematol Malignancies, 1098 Xueyuan AVE, Shenzhen 518060, Peoples R China
[4] Beijing USCI Med Lab Co Ltd, Beijing, Peoples R China
[5] Guangzhou Med Univ, Dept Hematol, Affiliated Hosp 2, Guangzhou 510260, Peoples R China
[6] Nankai Univ, Sch Med, 94 Weijin Rd, Tianjin 300071, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Acute myeloid leukemia; FLT3-ITD; FLT3-TKD; TET2; Next-generation sequencing; PARTIAL TANDEM DUPLICATION; AML; COOCCURRENCE; IMPACT; NGS;
D O I
10.1186/s40164-021-00207-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The receptor tyrosine kinase FLT3 with internal tandem duplications within the juxtamembrane domain (FLT3-ITD) is a poor prognostic factor; however, the prognostic significance of missense mutation in the tyrosine kinase domain (FLT3-TKD) is controversial. Furthermore, the accompanying mutations and fusion genes with FLT3 mutations are unclear in acute myeloid leukemia (AML). Methods We investigated FLT3 mutations and their correlation with other gene mutations and gene fusions through two RNA-seq based next-generation sequencing (NGS) method and prognostic impact in 207 de novo AML patients. Results FLT3-ITD mutations were positive in 58 patients (28%), and FLT3-TKD mutations were positive in 20 patients (9.7%). FLT3-ITD was associated with a higher white blood cell count (WBC, mean 72.9 x 10(9)/L vs. 24.2 x 10(9)/L, P = 0.000), higher bone marrow blasts (mean 65.9% vs. 56.0%, P = 0.024), and NK-AML (normal karyotype) (64.8% vs. 48.4%, P = 0.043). NPM1 and DNMT3A mutations were enriched in FLT3-ITD (53.5% vs. 15.3%, P = 0.000; 34.6% vs. 13%, P = 0.003). However, the mutations of CEBPA were excluded in FLT3-AML (3.8% vs. 0% vs. 19.8%, P = 0.005). Mutations of Ras and TP53 were unlikely associated with FLT3-ITD (1.9% vs. 20.6%, P = 0.006; 0% vs. 6.1%, P = 0.04). The common fusion genes (> 10%) in FLT3-ITD had MLL-rearrangement and NUP98-rearrangement, while the common fusion genes in FLT3-TKD had AML1-ETO and MLL-rearrangement. Two novel fusion genes PRDM16-SKI and EFAN2-ZNF238 were identified in FLT3-ITD patients. Gene fusions and NPM1 mutation were mutually excluded in FLT3-ITD and FLT3-TKD patients. Their patterns of mutual exclusivity and cooperation among mutated genes suggest that additional driver genetic alterations are required and reveal two evolutionary patterns of FLT3 pathogenesis. Patients with FLT3-ITD had a lower CR (complete remission) rate, lower 3-year OS (overall survival), DFS (disease-free survival), and EFS (event-free survival) compared to FLT3(wt)AML. NK-AML with FLT3-ITD had a lower 3-year OS, DFS, and EFS than those without, while FLT3-TKD did not influence the survival in whole cohort and NK-AML. Besides, we found that FLT3-ITD/TET2 bimutation defined a poor prognostic subgroup. Conclusions Our study offers deep insights into the molecular pathogenesis and biology of AML with FLT3-ITD and FLT3-TKD by providing the profiles of concurrent molecular alterations and the clinical impact of FLT3-ITD and FLT3-TKD on AML patients.
引用
收藏
页数:15
相关论文
共 51 条
[21]   TET2: A cornerstone in normal and malignant hematopoiesis [J].
Kunimoto, Hiroyoshi ;
Nakajima, Hideaki .
CANCER SCIENCE, 2021, 112 (01) :31-40
[22]   Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia [J].
Ley, Timothy J. ;
Miller, Christopher ;
Ding, Li ;
Raphael, Benjamin J. ;
Mungall, Andrew J. ;
Robertson, A. Gordon ;
Hoadley, Katherine ;
Triche, Timothy J., Jr. ;
Laird, Peter W. ;
Baty, Jack D. ;
Fulton, Lucinda L. ;
Fulton, Robert ;
Heath, Sharon E. ;
Kalicki-Veizer, Joelle ;
Kandoth, Cyriac ;
Klco, Jeffery M. ;
Koboldt, Daniel C. ;
Kanchi, Krishna-Latha ;
Kulkarni, Shashikant ;
Lamprecht, Tamara L. ;
Larson, David E. ;
Lin, Ling ;
Lu, Charles ;
McLellan, Michael D. ;
McMichael, Joshua F. ;
Payton, Jacqueline ;
Schmidt, Heather ;
Spencer, David H. ;
Tomasson, Michael H. ;
Wallis, John W. ;
Wartman, Lukas D. ;
Watson, Mark A. ;
Welch, John ;
Wendl, Michael C. ;
Ally, Adrian ;
Balasundaram, Miruna ;
Birol, Inanc ;
Butterfield, Yaron ;
Chiu, Readman ;
Chu, Andy ;
Chuah, Eric ;
Chun, Hye-Jung ;
Corbett, Richard ;
Dhalla, Noreen ;
Guin, Ranabir ;
He, An ;
Hirst, Carrie ;
Hirst, Martin ;
Holt, Robert A. ;
Jones, Steven .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 368 (22) :2059-2074
[23]   Gene fusions and RNA trans-splicing in normal and neoplastic human cells [J].
Li, Hui ;
Wang, Jinglan ;
Ma, Xianyong ;
Sklar, Jeffrey .
CELL CYCLE, 2009, 8 (02) :218-222
[24]   The MLL recombinome of acute leukemias in 2013 [J].
Meyer, C. ;
Hofmann, J. ;
Burmeister, T. ;
Groeger, D. ;
Park, T. S. ;
Emerenciano, M. ;
de Oliveira, M. Pombo ;
Renneville, A. ;
Villarese, P. ;
Macintyre, E. ;
Cave, H. ;
Clappier, E. ;
Mass-Malo, K. ;
Zuna, J. ;
Trka, J. ;
De Braekeleer, E. ;
De Braekeleer, M. ;
Oh, S. H. ;
Tsaur, G. ;
Fechina, L. ;
van der Velden, V. H. J. ;
van Dongen, J. J. M. ;
Delabesse, E. ;
Binato, R. ;
Silva, M. L. M. ;
Kustanovich, A. ;
Aleinikova, O. ;
Harris, M. H. ;
Lund-Aho, T. ;
Juvonen, V. ;
Heidenreich, O. ;
Vormoor, J. ;
Choi, W. W. L. ;
Jarosova, M. ;
Kolenova, A. ;
Bueno, C. ;
Menendez, P. ;
Wehner, S. ;
Eckert, C. ;
Talmant, P. ;
Tondeur, S. ;
Lippert, E. ;
Launay, E. ;
Henry, C. ;
Ballerini, P. ;
Lapillone, H. ;
Callanan, M. B. ;
Cayuela, J. M. ;
Herbaux, C. ;
Cazzaniga, G. .
LEUKEMIA, 2013, 27 (11) :2165-2176
[25]   Mechanistic insights and potential therapeutic approaches for NUP98-rearranged hematologic malignancies [J].
Michmerhuizen, Nicole L. ;
Klco, Jeffery M. ;
Mullighan, Charles G. .
BLOOD, 2020, 136 (20) :2275-2289
[26]  
Ming Y., 2020, J HEMATOL ONCOL, V13, P72, DOI [10.1186/s13045-020-00908-z, DOI 10.1186/S13045-020-00908-Z]
[27]   Targeted Inhibition of the NUP98-NSD1 Fusion Oncogene in Acute Myeloid Leukemia [J].
Mohanty, Sagarajit ;
Jyotsana, Nidhi ;
Sharma, Amit ;
Kloos, Arnold ;
Gabdoulline, Razif ;
Othman, Basem ;
Lai, Courteney K. ;
Schottmann, Renate ;
Mandhania, Madhvi ;
Schmoellerl, Johannes ;
Grebien, Florian ;
Ramsay, Euan ;
Thomas, Anitha ;
Vornlocher, Hans-Peter ;
Ganser, Arnold ;
Thol, Felicitas ;
Heuser, Michael .
CANCERS, 2020, 12 (10) :1-17
[28]   Whole genome sequencing analysis for cancer genomics and precision medicine [J].
Nakagawa, Hidewaki ;
Fujita, Masashi .
CANCER SCIENCE, 2018, 109 (03) :513-522
[29]   NUP98/NSD1 and FLT3/ITD coexpression is more prevalent in younger AML patients and leads to induction failure: a COG and SWOG report [J].
Ostronoff, Fabiana ;
Othus, Megan ;
Gerbing, Robert B. ;
Loken, Michael R. ;
Raimondi, Susana C. ;
Hirsch, Betsy A. ;
Lange, Beverly J. ;
Petersdorf, Stephen ;
Radich, Jerald ;
Appelbaum, Frederick R. ;
Gamis, Alan S. ;
Alonzo, Todd A. ;
Meshinchi, Soheil .
BLOOD, 2014, 124 (15) :2400-2407
[30]   Genomic Classification and Prognosis in Acute Myeloid Leukemia [J].
Papaemmanuil, Elli ;
Gerstung, Moritz ;
Bullinger, Lars ;
Gaidzik, Verena I. ;
Paschka, Peter ;
Roberts, Nicola D. ;
Potter, Nicola E. ;
Heuser, Michael ;
Thol, Felicitas ;
Bolli, Niccolo ;
Gundem, Gunes ;
Van Loo, Peter ;
Martincorena, Inigo ;
Ganly, Peter ;
Mudie, Laura ;
McLaren, Stuart ;
O'Meara, Sarah ;
Raine, Keiran ;
Jones, David R. ;
Teague, Jon W. ;
Butler, Adam P. ;
Greaves, Mel F. ;
Ganser, Arnold ;
Doehner, Konstanze ;
Schlenk, Richard F. ;
Doehner, Hartmut ;
Campbell, Peter J. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 374 (23) :2209-2221