Stochastic bifurcation for two-time-scale dynamical system with α-stable Levy noise

被引:10
作者
Yuan, Shenglan [1 ]
Zeng, Zhigang [2 ]
Duan, Jinqiao [3 ]
机构
[1] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Wuhan 430074, Peoples R China
[3] IIT, Dept Appl Math, Chicago, IL 60616 USA
关键词
nonlinear dynamics; stationary states; stochastic processes; systemic stability;
D O I
10.1088/1742-5468/abdeb2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work focuses on stochastic bifurcation for a slow-fast dynamical system driven by non-Gaussian alpha-stable Levy noise. We prove the main result for the stochastic equilibrium states for the original system and the reduced system based on the random slow manifold. Then, it is verified that the slow reduced system bears the stochastic bifurcation phenomenon inherited from the original system. Furthermore, we investigate the number and stability type of stochastic equilibrium states for dynamical systems through numerical simulations, and it is illustrated that the slow reduced system captures the stochastic bifurcation of the original system.
引用
收藏
页数:22
相关论文
共 32 条
[1]  
[Anonymous], 2012, Numerical solution of SDE through computer experiments
[2]  
[Anonymous], 1994, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance
[3]  
Arnold L., 2013, Random Dynamical Systems
[4]   A STOCHASTIC VERSION OF CENTER MANIFOLD THEORY [J].
BOXLER, P .
PROBABILITY THEORY AND RELATED FIELDS, 1989, 83 (04) :509-545
[5]  
Chen HQ, 2012, ACTA MATH SCI, V32, P1391
[6]   Transverse bifurcations of homoclinic cycles [J].
Chossat, P ;
Krupa, M ;
Melbourne, I ;
Scheel, A .
PHYSICA D, 1997, 100 (1-2) :85-100
[7]   Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics [J].
Denaro, G. ;
Valenti, D. ;
La Cognata, A. ;
Spagnolo, B. ;
Bonanno, A. ;
Basilone, G. ;
Mazzola, S. ;
Zgozi, S. W. ;
Aronica, S. ;
Brunet, C. .
ECOLOGICAL COMPLEXITY, 2013, 13 :21-34
[8]  
Duan J., 2015, Cambridge Texts Appl. Math.
[9]   Design of a Lambda system for population transfer in superconducting nanocircuits [J].
Falci, G. ;
La Cognata, A. ;
Berritta, M. ;
D'Arrigo, A. ;
Paladino, E. ;
Spagnolo, B. .
PHYSICAL REVIEW B, 2013, 87 (21)
[10]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&