Elucidating the genetics of grain yield and stress-resilience in bread wheat using a large-scale genome-wide association mapping study with 55,568 lines

被引:14
作者
Juliana, Philomin [1 ]
Singh, Ravi Prakash [1 ]
Poland, Jesse [2 ]
Shrestha, Sandesh [2 ]
Huerta-Espino, Julio [3 ]
Govindan, Velu [1 ]
Mondal, Suchismita [1 ]
Abdiel Crespo-Herrera, Leonardo [1 ]
Kumar, Uttam [4 ,5 ]
Joshi, Arun Kumar [4 ,5 ]
Payne, Thomas [1 ]
Bhati, Pradeep Kumar [4 ,5 ]
Tomar, Vipin [5 ,6 ]
Consolacion, Franjel [1 ]
Campos Serna, Jaime Amador [1 ]
机构
[1] Int Maize & Wheat Improvement Ctr CIMMYT, Texcoco, Mexico
[2] Kansas State Univ, Dept Plant Pathol, Wheat Genet Resource Ctr, Throckmorton Hall, Manhattan, KS 66506 USA
[3] Inst Nacl Invest Forest Agr & Pecuarias INIFAP, Campo Expt Valle Mexico, Chapingo, Mexico
[4] CIMMYT, NASC Complex, New Delhi, India
[5] Borlaug Inst South Asia BISA, New Delhi, India
[6] Inst Adv Res, Gandhinagar, Gujarat, India
关键词
LINKAGE DISEQUILIBRIUM; QTL; TRAITS; DISSECTION; COMPONENTS; SELECTION; IMPACTS; DROUGHT; KERNEL;
D O I
10.1038/s41598-021-84308-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Wheat grain yield (GY) improvement using genomic tools is important for achieving yield breakthroughs. To dissect the genetic architecture of wheat GY potential and stress-resilience, we have designed this large-scale genome-wide association study using 100 datasets, comprising 105,000 GY observations from 55,568 wheat lines evaluated between 2003 and 2019 by the International Maize and Wheat Improvement Center and national partners. We report 801 GY-associated genotyping-by-sequencing markers significant in more than one dataset and the highest number of them were on chromosomes 2A, 6B, 6A, 5B, 1B and 7B. We then used the linkage disequilibrium (LD) between the consistently significant markers to designate 214 GY-associated LD-blocks and observed that 84.5% of the 58 GY-associated LD-blocks in severe-drought, 100% of the 48 GY-associated LD-blocks in early-heat and 85.9% of the 71 GY-associated LD-blocks in late-heat, overlapped with the GY-associated LD-blocks in the irrigated-bed planting environment, substantiating that simultaneous improvement for GY potential and stress-resilience is feasible. Furthermore, we generated the GY-associated marker profiles and analyzed the GY favorable allele frequencies for a large panel of 73,142 wheat lines, resulting in 44.5 million datapoints. Overall, the extensive resources presented in this study provide great opportunities to accelerate breeding for high-yielding and stress-resilient wheat varieties.
引用
收藏
页数:15
相关论文
共 64 条
[21]   Genomic Selection for Grain Yield in the CIMMYT Wheat Breeding Program-Status and Perspectives [J].
Juliana, Philomin ;
Prakash Singh, Ravi ;
Braun, Hans-Joachim ;
Huerta-Espino, Julio ;
Crespo-Herrera, Leonardo ;
Govindan, Velu ;
Mondal, Suchismita ;
Poland, Jesse ;
Shrestha, Sandesh .
FRONTIERS IN PLANT SCIENCE, 2020, 11
[22]   Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields [J].
Juliana, Philomin ;
Singh, Ravi Prakash ;
Braun, Hans-Joachim ;
Huerta-Espino, Julio ;
Crespo-Herrera, Leonardo ;
Payne, Thomas ;
Poland, Jesse ;
Shrestha, Sandesh ;
Kumar, Uttam ;
Joshi, Arun Kumar ;
Imtiaz, Muhammad ;
Rahman, Mohammad Mokhlesur ;
Toledo, Fernando Henrique .
FRONTIERS IN PLANT SCIENCE, 2020, 11
[23]   Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics [J].
Juliana, Philomin ;
Poland, Jesse ;
Huerta-Espino, Julio ;
Shrestha, Sandesh ;
Crossa, Jose ;
Crespo-Herrera, Leonardo ;
Henrique Toledo, Fernando ;
Govindan, Velu ;
Mondal, Suchismita ;
Kumar, Uttam ;
Bhavani, Sridhar ;
Singh, Pawan K. ;
Randhawa, Mandeep S. ;
He, Xinyao ;
Guzman, Carlos ;
Dreisigacker, Susanne ;
Rouse, Matthew N. ;
Jin, Yue ;
Perez-Rodriguez, Paulino ;
Montesinos-Lopez, Osval A. ;
Singh, Daljit ;
Rahman, Mohammad Mokhlesur ;
Marza, Felix ;
Singh, Ravi Prakash .
NATURE GENETICS, 2019, 51 (10) :1530-+
[24]   Prospects and Challenges of Applied Genomic Selection-A New Paradigm in Breeding for Grain Yield in Bread Wheat [J].
Juliana, Philomin ;
Singh, Ravi P. ;
Poland, Jesse ;
Mondal, Suchismita ;
Crossa, Jose ;
Montesinos-Lopez, Osval A. ;
Dreisigacker, Susanne ;
Perez-Rodriguez, Paulino ;
Huerta-Espino, Julio ;
Crespo-Herrera, Leonardo ;
Govindan, Velu .
PLANT GENOME, 2018, 11 (03)
[25]   The advantages and limitations of trait analysis with GWAS: a review [J].
Korte, Arthur ;
Farlow, Ashley .
PLANT METHODS, 2013, 9
[26]   Genetic dissection of grain yield in bread wheat. I. QTL analysis [J].
Kuchel, H. ;
Williams, K. J. ;
Langridge, P. ;
Eagles, H. A. ;
Jefferies, S. P. .
THEORETICAL AND APPLIED GENETICS, 2007, 115 (08) :1029-1041
[27]   Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction [J].
Kuchel, H. ;
Williams, K. ;
Langridge, P. ;
Eagles, H. A. ;
Jefferies, S. P. .
THEORETICAL AND APPLIED GENETICS, 2007, 115 (07) :1015-1027
[28]  
Langmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/NMETH.1923, 10.1038/nmeth.1923]
[29]   Genetic architecture of grain yield in bread wheat based on genome-wide association studies [J].
Li, Faji ;
Wen, Weie ;
Liu, Jindong ;
Zhang, Yong ;
Cao, Shuanghe ;
He, Zhonghu ;
Rasheed, Awais ;
Jin, Hui ;
Zhang, Chi ;
Yan, Jun ;
Zhang, Pingzhi ;
Wan, Yingxiu ;
Xia, Xianchun .
BMC PLANT BIOLOGY, 2019, 19 (1)
[30]  
Li L.-Y., 2020, **DATA OBJECT**