Estimation and application of spatially variable noise fields in diffusion tensor imaging

被引:27
|
作者
Landman, Bennett A. [1 ]
Bazin, Pierre-Louis [2 ]
Prince, Jerry L. [1 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Neuroradiol Div, Baltimore, MD 21287 USA
关键词
Noise; Noise field; DTI; MRI; Brain; PRINCIPAL EIGENVECTOR MEASUREMENTS; MAGNETIC-RESONANCE IMAGES; FRACTIONAL ANISOTROPY; MEAN DIFFUSIVITY; RICIAN NOISE; SIGNAL; MRI; RATIO; REPRODUCIBILITY; PERFORMANCE;
D O I
10.1016/j.mri.2009.01.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Optimal interpretation of magnetic resonance image content often requires an estimate of the underlying image noise, which is typically realized as a spatially invariant estimate of the noise distribution. This is not an ideal practice in diffusion tensor imaging because the noise distribution is usually spatially varying due to the use of fast imaging and noise suppression techniques. A new estimation approach for spatially varying noise fields (NFs) is proposed in this article. The approach is based on a noise invariance property in scenarios in which more than one image, each with potentially different signal levels, is acquired on each slice, as in diffusion-weighted MRI. This technique leads to improved NF estimates in simulations, phantom experiments and in vivo studies when compared to traditional NF estimators that use regional variability or background intensity histograms. The proposed method reduces the NF estimation error by a factor of 100 in simulations, shows a strong linear correlation (R-2 = 0.99) between theoretical and estimated noise changes in phantoms and demonstrates consistent (<5% variability) NF estimates in vivo. The advantages of spatially varying NF estimation are demonstrated for power analysis, outlier detection and tensor estimation. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:741 / 751
页数:11
相关论文
共 50 条
  • [1] Robust Estimation of Spatially Variable Noise Fields
    Landman, Bennett A.
    Bazin, Pierre-Louis
    Smith, Seth A.
    Prince, Jerry L.
    MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (02) : 500 - 509
  • [2] Correcting power and p-value calculations for bias in diffusion tensor imaging
    Lauzon, Carolyn B.
    Landman, Bennett A.
    MAGNETIC RESONANCE IMAGING, 2013, 31 (06) : 857 - 864
  • [3] The effect of concomitant gradient fields on diffusion tensor imaging
    Baron, C. A.
    Lebel, R. M.
    Wilman, A. H.
    Beaulieu, C.
    MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (04) : 1190 - 1201
  • [4] On the effects of dephasing due to local gradients in diffusion tensor imaging experiments: relevance for diffusion tensor imaging fiber phantoms
    Laun, Frederik Bernd
    Huff, Sandra
    Stieltjes, Bram
    MAGNETIC RESONANCE IMAGING, 2009, 27 (04) : 541 - 548
  • [5] The effects of noise in cardiac diffusion tensor imaging and the benefits of averaging complex data
    Scott, Andrew D.
    Nielles-Vallespin, Sonia
    Ferreira, Pedro F.
    McGill, Laura-Ann
    Pennell, Dudley J.
    Firmin, David N.
    NMR IN BIOMEDICINE, 2016, 29 (05) : 588 - 599
  • [6] Intrasession and Intersession Repeatability of Diffusion Tensor Imaging in Healthy Human Liver
    Wong, Oi Lei
    Leung, Thomas Wai Tong
    Lo, Gladys Goh
    Yuan, Jing
    Li, Wing Wa
    Noseworthy, Michael D.
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2017, 41 (04) : 578 - 585
  • [7] Diffusion tensor imaging and fiber tractography of the median nerve at 1.5T: optimization of b value
    Andreisek, Gustav
    White, Lawrence M.
    Kassner, Andrea
    Tomlinson, George
    Sussman, Marshall S.
    SKELETAL RADIOLOGY, 2009, 38 (01) : 51 - 59
  • [8] Robust Correction of Spike Noise: Application to Diffusion Tensor Imaging
    Chavez, S.
    Storey, P.
    Graham, S. J.
    MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (02) : 510 - 519
  • [9] Assessment of bias in experimentally measured diffusion tensor imaging parameters using SIMEX
    Lauzon, Carolyn B.
    Crainiceanu, Ciprian
    Caffo, Brian C.
    Landman, Bennett A.
    MAGNETIC RESONANCE IN MEDICINE, 2013, 69 (03) : 891 - 902
  • [10] Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging
    Lauzon, Carolyn B.
    Asman, Andrew J.
    Esparza, Michael L.
    Burns, Scott S.
    Fan, Qiuyun
    Gao, Yurui
    Anderson, Adam W.
    Davis, Nicole
    Cutting, Laurie E.
    Landman, Bennett A.
    PLOS ONE, 2013, 8 (04):