Existence and a priori estimates for positive solutions of p-Laplace systems

被引:55
作者
Azizieh, U
Clément, P
Mitidieri, E
机构
[1] Free Univ Brussels, Dept Math, B-1050 Brussels, Belgium
[2] Delft Univ Technol, Dept Tech Math & Informat, Delft, Netherlands
[3] Univ Trieste, Dipartimento Sci Matemat, I-34127 Trieste, Italy
关键词
nonlinear elliptic PDE's; elliptic systems; moving hyperplane method; a priori estimates;
D O I
10.1006/jdeq.2001.4149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use continuation and moving hyperplane methods to prove some existence and a priori estimates for p-Laplace systems of the form -Delta(p1)u = f(\v\) in Omega, u = 0 on partial derivativeOmega, -Delta(p2)v - q(\u\) in Omega, v = 0 on partial derivativeOmega, where 1 < p(1), p(2) < N, Omega subset of R-N is bounded and convex, and f, g: R --> R+ are nondecreasing locally Lipschitz continuous functions satisfying C-1\s\(q1) less than or equal to f(s) less than or equal to C-2\s\(q), D-1\s\(q2) less than or equal to g(s) less than or equal to D-2\s\q(2) Vs is an element of R+ for some positive constants C-1, C-2, D-1, D-2 and q(1)q(2) > (p(1) - 1)(p(2) - 1). We extend results obtained in Azizieh and Cement (J. Differential Equations, 179 (2002), 213245) where the case of a single equation was considered. (C) 2002 Elsevie, Science (USA).
引用
收藏
页码:422 / 442
页数:21
相关论文
共 22 条
[11]  
Damascelli L., 2000, ADV DIFFERENTIAL EQU, V5, P1179, DOI DOI 10.57262/ADE/1356651297
[13]  
Gidas B., 1981, Communs partial diff. Eqns, V6, P883, DOI 10.1080/03605308108820196
[14]  
HULSHOF J, 1993, W9306 U LEID MATH I
[15]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219
[16]  
Mitidieri E, 1998, DOKL AKAD NAUK+, V359, P456
[17]  
Mitidieri E., 1999, P STEKLOV I MATH, V227, P186
[18]  
NECAS J, 1983, TEUBNER, V52
[19]  
Rabinowitz P., 1973, ROCKY MOUNTAIN J MAT, V3, P161, DOI [DOI 10.1216/RMJ-1973-3-2-161, 10.1216/RMJ-1973-3-2-161]