Existence and a priori estimates for positive solutions of p-Laplace systems

被引:55
作者
Azizieh, U
Clément, P
Mitidieri, E
机构
[1] Free Univ Brussels, Dept Math, B-1050 Brussels, Belgium
[2] Delft Univ Technol, Dept Tech Math & Informat, Delft, Netherlands
[3] Univ Trieste, Dipartimento Sci Matemat, I-34127 Trieste, Italy
关键词
nonlinear elliptic PDE's; elliptic systems; moving hyperplane method; a priori estimates;
D O I
10.1006/jdeq.2001.4149
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use continuation and moving hyperplane methods to prove some existence and a priori estimates for p-Laplace systems of the form -Delta(p1)u = f(\v\) in Omega, u = 0 on partial derivativeOmega, -Delta(p2)v - q(\u\) in Omega, v = 0 on partial derivativeOmega, where 1 < p(1), p(2) < N, Omega subset of R-N is bounded and convex, and f, g: R --> R+ are nondecreasing locally Lipschitz continuous functions satisfying C-1\s\(q1) less than or equal to f(s) less than or equal to C-2\s\(q), D-1\s\(q2) less than or equal to g(s) less than or equal to D-2\s\q(2) Vs is an element of R+ for some positive constants C-1, C-2, D-1, D-2 and q(1)q(2) > (p(1) - 1)(p(2) - 1). We extend results obtained in Azizieh and Cement (J. Differential Equations, 179 (2002), 213245) where the case of a single equation was considered. (C) 2002 Elsevie, Science (USA).
引用
收藏
页码:422 / 442
页数:21
相关论文
共 22 条
[1]  
ANANE A, 1987, THESIS U LIBRE BRUXE
[2]   A priori estimates and continuation methods for positive solutions of p-Laplace equations [J].
Azizieh, C ;
Clément, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (01) :213-245
[3]  
AZIZIEH C, IN PRESS REND I MAT
[4]  
AZIZIEH C, UNPUB NOTE MOVING HY
[5]  
CARISTI G, 2000, SOME NONEXISTENCE TH
[6]   POSITIVE SOLUTIONS FOR A QUASI-LINEAR SYSTEM VIA BLOW-UP [J].
CLEMENT, P ;
MANASEVICH, R ;
MITIDIERI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (12) :2071-2106
[7]   ON A NONLINEAR EIGENVALUE PROBLEM OCCURRING IN POPULATION-GENETICS [J].
CLEMENT, P ;
PELETIER, LA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1985, 100 :85-101
[8]   Existence of positive solutions for a nonvariational quasilinear elliptic system [J].
Clément, P ;
Fleckinger, J ;
Mitidieri, E ;
de Thélin, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (02) :455-477
[9]   Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results [J].
Damascelli, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (04) :493-516
[10]  
Damascelli L., 1998, ANN SC NORM SUP PI S, V26, P689