The metal-binding sites of glycose phosphates

被引:9
|
作者
Gilg, Kathrin [1 ]
Mayer, Tobias [1 ]
Ghaschghaie, Natascha [1 ]
Kluefers, Peter [1 ]
机构
[1] Univ Munich, Dept Chem & Biochem, D-81377 Munich, Germany
关键词
SUBSTRATE-BINDING; FRUCTOSE-1,6-BISPHOSPHATE ALDOLASE; RAC-MANNOSE; COMPLEXES; NMR; LIGANDS; SUGARS; MODEL;
D O I
10.1039/b909431h
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
In aqueous solution, the reducing sugar phosphates D-arabinose 5-phosphate, D-ribose 5-phosphate, D-fructose 1,6-bisphosphate, D-fructose 6-phosphate, D-glucose 6-phosphate and D-mannose 6-phosphate provide metal-binding sites at their glycose core on reaction with Pd-II(en) or M-III(tacn) residues (M = Ga, Co; en = ethylenediamine, tacn = 1,4,7-triazacyclononane). The individual species were detected by one-and two-dimensional NMR spectroscopy. The coordination patterns are related to the metal-binding modes of the respective parent glycoses. In detail, ribo-and arabinofuranose phosphate favour kappa O-1,O-3 coordination, whereas the ketofuranose core of fructose phosphate and fructose bisphosphate provides the kappa O-2,O-3 chelator thus maintaining the configuration of the respective major solution anomer. On palladium excess, D-fructose 6-phosphate is metallated twice in a unique kappa O-1,O-3:kappa O-2,O-4 metallation pattern. Dimetallation is also found for the aldohexose phosphates. A mixed glycose-core-phosphate chelation was detected for Pd-II(en) and M-III(tacn) residues with M = Al, Ga in the pH range just above the physiological pH for the D-fructose 1,6-bisphosphate ligand. The results are discussed in relation to D-fructose-1,6-bisphosphate-metabolism in class-II aldolases.
引用
收藏
页码:7934 / 7945
页数:12
相关论文
共 50 条
  • [1] METAL-BINDING SITES IN PROTEINS
    TAINER, JA
    ROBERTS, VA
    GETZOFF, ED
    CURRENT OPINION IN BIOTECHNOLOGY, 1991, 2 (04) : 582 - 591
  • [2] Alternative metal-binding sites in rubrerythrin
    Sieker, LC
    Holmes, M
    Le Trong, I
    Turley, S
    Santarsiero, BD
    Liu, MY
    LeGall, J
    Stenkamp, RE
    NATURE STRUCTURAL BIOLOGY, 1999, 6 (04): : 308 - 309
  • [3] Alternative metal-binding sites in rubrerythrin
    L.C. Sieker
    M. Holmes
    I. Le Trong
    S. Turley
    B.D. Santarsiero
    M.-Y. Liu
    J. LeGall
    R.E. Stenkamp
    Nature Structural Biology, 1999, 6 (4) : 308 - 309
  • [4] THE DESIGN OF METAL-BINDING SITES IN PROTEINS
    REGAN, L
    ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 1993, 22 : 257 - 281
  • [5] Engineering metal-binding sites in proteins
    Lu, Y
    Valentine, JS
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (04) : 495 - 500
  • [6] FULVIC-ACIDS - STRUCTURE AND METAL-BINDING .2. PREDOMINANT METAL-BINDING SITES
    MURRAY, K
    LINDER, PW
    JOURNAL OF SOIL SCIENCE, 1984, 35 (02): : 217 - 222
  • [7] STRUCTURE AND FUNCTION OF METAL-BINDING SITES IN PROTEINS
    BRANDEN, CI
    HOPPE-SEYLERS ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE, 1979, 360 (09): : 1131 - 1131
  • [8] CHEMISTRY OF METAL-BINDING SITES IN MUTANT THIOREDOXINS
    CARADONNA, JP
    HELLINGA, HW
    RICHARDS, FM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 717 - INOR
  • [9] THE PREDICTION AND CHARACTERIZATION OF METAL-BINDING SITES IN PROTEINS
    GREGORY, DS
    MARTIN, ACR
    CHEETHAM, JC
    REES, AR
    PROTEIN ENGINEERING, 1993, 6 (01): : 29 - 35
  • [10] The tridentate metal-binding sites of the common glycoses
    Ghaschghaie, Natascha
    Hoffmann, Thomas
    Steinborn, Martin
    Kluefers, Peter
    DALTON TRANSACTIONS, 2010, 39 (23) : 5535 - 5543