FoxO1 and HNF-4 Are Involved in Regulation of Hepatic Glucokinase Gene Expression by Resveratrol

被引:62
作者
Ganjam, Goutham Kumar [2 ]
Dimova, Elitsa Y. [3 ]
Unterman, Terry G. [1 ,4 ,5 ]
Kietzmann, Thomas [3 ]
机构
[1] Univ Illinois, Coll Med, Dept Med, Chicago, IL 60612 USA
[2] Univ Marburg, Dept Nutrient Physiol, D-35043 Marburg, Germany
[3] Univ Oulu, Dept Biochem, FI-90014 Oulu, Finland
[4] Univ Illinois, Coll Med, Dept Physiol & Biophys, Chicago, IL 60612 USA
[5] Jesse Brown Vet Affairs Med Ctr, Chicago, IL 60612 USA
基金
美国国家卫生研究院;
关键词
TRANSCRIPTION FACTOR FOXO1; PROTEIN-KINASE-B; FACTOR-BINDING PROTEIN-1; INSULIN-RESPONSE UNIT; CALORIE RESTRICTION; PROMOTER ACTIVITY; CELL-SURVIVAL; PEROXISOME PROLIFERATOR; DEPENDENT REGULATION; LENTIVIRUS VECTOR;
D O I
10.1074/jbc.M109.045260
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Resveratrol, a polyphenol derived from grapes, exerts important effects on glucose and lipid metabolism, yet detailed mechanisms mediating these effects remain unknown. The liver plays a central role in energy homeostasis, and glucokinase (GK) is a key enzyme involved in glucose utilization. Resveratrol activates SIRT1 (sirtuin 1), which promotes deacetylation of the forkhead transcription factor FoxO1. Previously, we reported that FoxO1 can suppress and that HNF-4 can stimulate GK expression in the liver. Here, we examined the role of FoxO1 and HNF-4 in mediating resveratrol effects on liver GK expression. Resveratrol suppressed hepatic GK expression in vivo and in isolated hepatocytes, and knocking down FoxO1 with shRNAs disrupted this effect. Reporter gene, gel shift, supershift assay, and chromatin immunoprecipitation studies show that FoxO1 binds to the GK promoter and that the interplay between FoxO1 and HNF-4 within the GK promoter is essential for mediating the effects of resveratrol. Resveratrol promotes deacetylation of FoxO1 and enhances its recruitment to the FoxO-binding element. Conversely, resveratrol suppresses recruitment of HNF-4 to its binding site, and knockdown of FoxO1 blocks this effect of resveratrol. Coprecipitation and chromatin immunoprecipitation studies show that resveratrol enhances interaction between FoxO1 and HNF-4, reduces binding of HNF-4 to its own site, and promotes its recruitment to the FoxO site in a FoxO1-dependent manner. These results provide the first evidence that resveratrol represses GK expression via FoxO1 and that the interaction between FoxO1 and HNF-4 contributes to these effects of resveratrol.
引用
收藏
页码:30783 / 30797
页数:15
相关论文
共 85 条
[1]   FoxOs at the crossroads of cellular metabolism, differentiation, and transformation [J].
Accili, D ;
Arden, KC .
CELL, 2004, 117 (04) :421-426
[2]   FOXO1 represses peroxisome proliferator-activated receptor-γ1 and -γ2 gene promoters in primary adipocytes -: A novel paradigm to increase insulin sensitivity [J].
Armoni, Michal ;
Harel, Chava ;
Karni, Shiri ;
Chen, Hui ;
Bar-Yoseph, Fabiana ;
Ver, Marel R. ;
Quon, Michael J. ;
Karnieli, Eddy .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2006, 281 (29) :19881-19891
[3]   Conservation of an insulin response unit between mouse and human glucose-6-phosphatase catalytic subunit gene promoters - Transcription factor FKHR binds the insulin response sequence [J].
Ayala, JE ;
Streeper, RS ;
Desgrosellier, JS ;
Durham, SK ;
Suwanichkul, A ;
Svitek, CA ;
Goldman, JK ;
Barr, FG ;
Powell, DR ;
O'Brien, RM .
DIABETES, 1999, 48 (09) :1885-1889
[4]   FoxO proteins in insulin action and metabolism [J].
Barthel, A ;
Schmoll, D ;
Unterman, TG .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2005, 16 (04) :183-189
[5]   Reactive oxygen species activate the HIF-1α promoter via a functional NFκB site [J].
Bonello, Steve ;
Zahringer, Christian ;
BelAiba, Rachida S. ;
Djordjevic, Talija ;
Hess, John ;
Michiels, Carine ;
Kietzmann, Thomas ;
Goerlach, Agnes .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2007, 27 (04) :755-761
[6]   Calorie restriction, SIRT1 and metabolism: Understanding longevity [J].
Bordone, L ;
Guarente, L .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (04) :298-305
[7]   Mechanism of human SIRT1 activation by resveratrol [J].
Borra, MT ;
Smith, BC ;
Denu, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (17) :17187-17195
[8]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[9]   Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J].
Brunet, A ;
Sweeney, LB ;
Sturgill, JF ;
Chua, KF ;
Greer, PL ;
Lin, YX ;
Tran, H ;
Ross, SE ;
Mostoslavsky, R ;
Cohen, HY ;
Hu, LS ;
Cheng, HL ;
Jedrychowski, MP ;
Gygi, SP ;
Sinclair, DA ;
Alt, FW ;
Greenberg, ME .
SCIENCE, 2004, 303 (5666) :2011-2015
[10]   Cell cycle and death control: long live Forkheads [J].
Burgering, BMT ;
Kops, GJPL .
TRENDS IN BIOCHEMICAL SCIENCES, 2002, 27 (07) :352-360