Conformal symbols and the action of contact vector fields over the superline

被引:30
作者
Conley, Charles H. [1 ]
机构
[1] Univ N Texas, Dept Math, Denton, TX 76203 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2009年 / 633卷
关键词
LIE-ALGEBRA; DIFFERENTIAL-OPERATORS; COVARIANT OPERATORS; ENVELOPING ALGEBRA; SUPERALGEBRAS; MODULES;
D O I
10.1515/CRELLE.2009.062
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be the Lie superalgebra of contact vector fields on the supersymmetric line R-1|1. We compute the action of K on the modules of differential and pseudo-differential operators between spaces of tensor densities, in terms of their conformal symbols. As applications we deduce the geometric subsymbols, 1-cohomology, and various uniserial subquotients of these modules. We also outline the computation of the K-equivalences and symmetries of their subquotients.
引用
收藏
页码:115 / 163
页数:49
相关论文
共 31 条
[1]  
Agrebaoui B., 2004, Belletin Soc. R. Sci. Liege, V72, P365, DOI [10.2991/jnmp.2006.13.4.7, DOI 10.2991/JNMP.2006.13.4.7]
[2]   On Casimir's ghost [J].
Arnaudon, D ;
Bauer, M ;
Frappat, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 187 (02) :429-439
[3]  
BASDOURI I, ARXIV0702645
[4]   THE GROUP WITH GRASSMANN STRUCTURE UOSP(1.2) [J].
BEREZIN, FA ;
TOLSTOY, VN .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (03) :409-428
[5]  
Cohen P. B., 1997, PROG NONLIN, V26, P17
[6]   Bounded subquotients of pseudodifferential operator modules [J].
Conley, CH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 257 (03) :641-657
[7]   Singular projective bases and the affine Bol operator [J].
Conley, CH ;
Sepanski, MR .
ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (01) :158-191
[8]   Bounded length 3 representations of the Virasoro Lie algebra [J].
Conley, CH .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (12) :609-628
[9]   Annihilators of tensor density modules [J].
Conley, Charles H. ;
Martin, Christiane .
JOURNAL OF ALGEBRA, 2007, 312 (01) :495-526
[10]   Space of second-order linear differential operators as a module over the Lie algebra of vector fields [J].
Duval, C ;
Ovsienko, VY .
ADVANCES IN MATHEMATICS, 1997, 132 (02) :316-333