Examples of Adaptive MCMC

被引:591
作者
Roberts, Gareth O. [1 ]
Rosenthal, Jeffrey S. [2 ]
机构
[1] Univ Lancaster, Fylde Coll, Dept Math & Stat, Lancaster LA1 4YF, England
[2] Univ Toronto, Dept Stat, Toronto, ON M5S 3G3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Adaption; Convergence; Hierarchical models; Markov chain Monte Carlo; Metropolis algorithm; Metropolis-within-Gibbs; Nonconjugate priors; Non-Markovian; CHAIN MONTE-CARLO; MARKOV-CHAINS; CONVERGENCE; HASTINGS;
D O I
10.1198/jcgs.2009.06134
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the use of adaptive MCMC algorithms to automatically tune the Markov chain parameters during a run. Examples include the Adaptive Metropolis (AM) multivariate algorithm of Haario, Saksman, and Tamminen (2001), Metropolis-within-Gibbs algorithms for nonconjugate hierarchical models, regionally adjusted Metropolis algorithms, and logarithmic scalings. Computer simulations indicate that the algorithms perform very well compared to nonadaptive algorithms, even in high dimension.
引用
收藏
页码:349 / 367
页数:19
相关论文
共 29 条
[1]  
ANDRIEU C, 2003, ERGODICITY PROPERTIE
[2]   On the efficiency of adaptive MCMC algorithms [J].
Andrieu, Christophe ;
Atchade, Yves F. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :336-349
[3]   On adaptive Markov chain Monte Carlo algorithms [J].
Atchadé, YF ;
Rosenthal, JS .
BERNOULLI, 2005, 11 (05) :815-828
[4]  
BAI Y, 2008, BOUNDED CONVERGENCE
[5]  
BEDARD M, 2006, OPTIMAL ACCEPTANCE R
[6]  
BEDARD M, 2006, WEAK CONVERGENCE MET
[7]   Identification of regeneration times in MCMC simulation, with application to adaptive schemes [J].
Brockwell, AE ;
Kadane, JB .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (02) :436-458
[8]   DATA-ANALYSIS USING STEINS ESTIMATOR AND ITS GENERALIZATIONS [J].
EFRON, B ;
MORRIS, C .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (350) :311-319
[9]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[10]  
Gelman A., 1996, Bayesian statistics, V5, P599