A combined adaptive-mixtures/plug-in estimator of multivariate probability densities

被引:14
作者
Cwik, J [1 ]
Koronacki, J [1 ]
机构
[1] POLISH ACAD SCI, INST COMP SCI, PL-01237 WARSAW, POLAND
关键词
nonparametric density estimation; plug-in kernel estimation; recursive EM algorithm; Gaussian clustering algorithm;
D O I
10.1016/S0167-9473(97)00032-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A multivariate extension of the plug-in kernel (and filtered kernel) estimator is proposed and this uses asymptotically optimal bandwidth matrix (matrices) for a normal mixture approximation of a density to be estimated (the filtered kernel estimator uses different matrices for different clusters of data). The normal mixture approximation is provided by a recursive version of the EM algorithm whose initial conditions are in turn obtained via an application of the ideas of adaptive mixtures density estimation and AIC-based pruning. Simulations show that the estimator proposed, while it is in fact a rather complex multistage estimation process, provides a very reliable way of estimating arbitrary and highly structured continuous densities on R-2 and, hopefully, R-3. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:199 / 218
页数:20
相关论文
共 28 条
[1]   A COMPARATIVE-STUDY OF SEVERAL SMOOTHING METHODS IN DENSITY-ESTIMATION [J].
CAO, R ;
CUEVAS, A ;
MANTEIGA, WG .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1994, 17 (02) :153-176
[2]  
CIESIELSKI Z, 1990, INT S NUM M, V94, P25
[3]  
CIESIELSKI Z, 1991, PROBAB MATH STAT-POL, V12, P1
[4]   Probability density estimation using a Gaussian clustering algorithm [J].
Cwik, J ;
Koronacki, J .
NEURAL COMPUTING & APPLICATIONS, 1996, 4 (03) :149-160
[5]  
CWIK J, 1996, UNPUB NEURAL COMPUTA
[6]   EXPLORATORY PROJECTION PURSUIT [J].
FRIEDMAN, JH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (397) :249-266
[7]  
Hardle W., 1991, Smoothing Techniques, DOI DOI 10.1007/978-1-4612-4432-5
[8]  
Hartigan J. A., 1979, Applied Statistics, V28, P100, DOI 10.2307/2346830
[9]  
JOHNSON NL, 1972, DISTRIBUTIONS STATIS
[10]  
KOWALCZYK T, 1989, STATISTICS, V20, P4625