In vivo function of the conserved non-catalytic domain of Werner syndrome helicase in DNA replication

被引:41
作者
Sharma, S
Sommers, JA
Brosh, RM
机构
[1] NIA, Lab Mol Gerontol, NIH, Baltimore, MD 21224 USA
[2] Univ Hyderabad, Sch Life Sci, Dept Biochem, Hyderabad 500046, Andhra Pradesh, India
关键词
D O I
10.1093/hmg/ddh234
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Werner syndrome is a genetic disorder characterized by genomic instability, elevated recombination and replication defects. The WRN gene encodes a RecQ helicase whose function(s) in cellular DNA metabolism is not well understood. To investigate the role of WRN in replication, we examined its ability to rescue cellular phenotypes of a yeast dna2 mutant defective in a helicase-endonuclease that participates with flap endonuclease 1 (FEN-1) in Okazaki fragment processing. Genetic complementation studies indicate that human WRN rescues dna2-1 mutant phenotypes of growth, cell cycle arrest and sensitivity to the replication inhibitor hydroxyurea or DNA damaging agent methylmethane sulfonate. A conserved non-catalytic C-terminal domain of WRN was sufficient for genetic rescue of dna2-1 mutant phenotypes. WRN and yeast FEN-1 were reciprocally co-immunoprecipitated from extracts of transformed dna2-1 cells. A physical interaction between yeast FEN-1 and WRN is demonstrated by yeast FEN-1 affinity pull-down experiments using transformed dna2-1 cells extracts and by ELISA assays with purified recombinant proteins. Biochemical analyses demonstrate that the C-terminal domain of WRN or BLM stimulates FEN-1 cleavage of its proposed physiological substrates during replication. Collectively, the results suggest that the WRN-FEN-1 interaction is biologically important in DNA metabolism and are consistent with a role of the conserved non-catalytic domain of a human RecQ helicase in DNA replication intermediate processing.
引用
收藏
页码:2247 / 2261
页数:15
相关论文
共 64 条
  • [1] Okazaki fragment maturation in yeast - I. Distribution of functions between FEN1 AND DNA2
    Ayyagari, R
    Gomes, XV
    Gordenin, DA
    Burgers, PMJ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (03) : 1618 - 1625
  • [2] Dna2 of Saccharomyces cerevisiae possesses a single-stranded DNA-specific endonuclease activity that is able to act on double-stranded DNA in the presence of ATP
    Bae, SH
    Choi, E
    Lee, KH
    Park, JS
    Lee, SH
    Seo, YS
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (41) : 26880 - 26890
  • [3] Coupling of DNA helicase and endonuclease activities of yeast Dna2 facilitates Okazaki fragment processing.
    Bae, SH
    Kim, DW
    Kim, J
    Kim, JH
    Kim, DH
    Kim, HD
    Kang, HY
    Seo, YS
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (29) : 26632 - 26641
  • [4] RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes
    Bae, SH
    Bae, KH
    Kim, JA
    Seo, YS
    [J]. NATURE, 2001, 412 (6845) : 456 - 461
  • [5] High-resolution structure of the E.coli RecQ helicase catalytic core
    Bernstein, DA
    Zittel, MC
    Keck, JL
    [J]. EMBO JOURNAL, 2003, 22 (19) : 4910 - 4921
  • [6] Replication protein A physically interacts with the Bloom's syndrome protein and stimulates its helicase activity
    Brosh, RM
    Li, JL
    Kenny, MK
    Karow, JK
    Cooper, MP
    Kureekattil, RP
    Hickson, ID
    Bohr, VA
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (31) : 23500 - 23508
  • [7] Biochemical characterization of the WRN-FEN-1 functional interaction
    Brosh, RM
    Driscoll, HC
    Dianov, GL
    Sommers, JA
    [J]. BIOCHEMISTRY, 2002, 41 (40) : 12204 - 12216
  • [8] Brosh RM, 2001, EMBO J, V20, P5791
  • [9] Roles of the Werner syndrome protein in pathways required for maintenance of genome stability
    Brosh, RM
    Bohr, VA
    [J]. EXPERIMENTAL GERONTOLOGY, 2002, 37 (04) : 491 - 506
  • [10] A YEAST GENE REQUIRED FOR DNA-REPLICATION ENCODES A PROTEIN WITH HOMOLOGY TO DNA HELICASES
    BUDD, ME
    CAMPBELL, JL
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (17) : 7642 - 7646