HOMOGENIZATION OF SYMMETRIC JUMP PROCESSES IN RANDOM MEDIA

被引:0
作者
Chen, Xin [1 ]
Chen, Zhen-Qing [2 ]
Kumagai, Takashi [3 ]
Wang, Jian [4 ,5 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
[3] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[4] Fujian Normal Univ, Fujian Key Lab Math Anal & Applicat FJKLMAA, Fuzhou 350007, Peoples R China
[5] Fujian Normal Univ, Ctr Appl Math Fujian Prov FJNU, Fuzhou 350007, Peoples R China
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2021年 / 66卷 / 01期
基金
中国国家自然科学基金;
关键词
homogenization; symmetric non-local Dirichlet form; stationary er-godic environment; alpha-stable-like operator; STOCHASTIC HOMOGENIZATION; PERIODIC HOMOGENIZATION; INVARIANCE-PRINCIPLE; DIFFUSIONS; DEGENERATE; OPERATORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper surveys some recent progress in [8] for the study of homogenization of symmetric jump processes in a one-parameter stationary ergodic environment. We further present some additional homogenization results under assumptions that are variants of [8], and identify the limiting effective Dirichlet forms explicitly. The jumping kernels of Dirichlet forms are of ca-stable-like with 0 < alpha < 2, and the associated coefficients as well as the coefficients of symmetrizing measures are allowed to be degenerate and unbounded.
引用
收藏
页码:83 / 105
页数:23
相关论文
共 37 条
[1]  
Allaire G., 2002, SHAPE OPTIMIZATION H, V1st ed.
[2]  
[Anonymous], 2012, Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation
[3]  
[Anonymous], STOCHASTIC DIFFERENT, DOI DOI 10.1007/978-1-4612-1592-9_3
[4]  
[Anonymous], 1978, Stud. Math. Appl.
[5]   A SOBOLEV INEQUALITY AND THE INDIVIDUAL INVARIANCE PRINCIPLE FOR DIFFUSIONS IN A PERIODIC POTENTIAL [J].
Ba, Moustapha ;
Mathieu, Pierre .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2015, 47 (03) :2022-2043
[6]  
Bailescu L., 2019, Z ANGEW MATH PHYS, V70
[7]   Recent progress on the Random Conductance Model [J].
Biskup, Marek .
PROBABILITY SURVEYS, 2011, 8 :294-373
[8]  
Chen X., ARXIV200308581
[9]  
Chen X., ANN APPL PROBAB
[10]   Random conductance models with stable-like jumps: Heat kernel estimates and Harnack inequalities [J].
Chen, Xin ;
Kumagai, Takashi ;
Wang, Jian .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)