2D printing technologies using graphene-based materials

被引:15
作者
Antonova, I. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Rzhanov Inst Semicond Phys, Prosp Akad Lavrenteva 13, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Ul Pirogova 2, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
printing technologies; graphene and graphene oxide suspensions; suspensions of fluorinated graphene; preparation and parameters of suspensions; graphene-based inks; properties of printed layers; instrument structures; development directions; LIQUID-PHASE EXFOLIATION; FIELD-EFFECT TRANSISTOR; FLEXIBLE ELECTRONICS; TRANSPARENT CONDUCTORS; THERMAL-CONDUCTIVITY; EXPANDED GRAPHITE; SHEAR EXFOLIATION; QUANTUM DOTS; OXIDE-FILMS; NANOSHEETS;
D O I
10.3367/UFNe.2016.03.037783
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper reviews major research into the use of graphene and other monolayer materials in 2D printing technologies for fabricating modern electronics and photonics devices. The paper discusses methods for preparing suspensions, properties of printed layers, examples and parameters of specific printed devices, and major trends in the field. Special emphasis is placed on the conceptual change in graphene suspension preparation from using organic liquids to utilizing water-based solutions for delaminating graphite and fabricating liquid ink. The paper also considers the trend towards the use of increasing graphene-rich ink, an approach whereby highly conductive printed layers can be obtained. The expansion of the range of materials employed is also discussed.
引用
收藏
页码:204 / 218
页数:15
相关论文
共 105 条
[1]   Fast and fully-scalable synthesis of reduced graphene oxide [J].
Abdolhosseinzadeh, Sina ;
Asgharzadeh, Hamed ;
Kim, Hyoung Seop .
SCIENTIFIC REPORTS, 2015, 5
[2]   Vertical heterostructures based on graphene and other 2D materials [J].
Antonova, I. V. .
SEMICONDUCTORS, 2016, 50 (01) :66-82
[3]  
Bazyleva E V, 2015, P 16 INT C YOUNG SPE, P3
[4]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[5]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[6]   Ultrasensitive Label-Free Detection of PNA-DNA Hybridization by Reduced Graphene Oxide Field-Effect Transistor Biosensor [J].
Cai, Bingjie ;
Wang, Shuting ;
Huang, Le ;
Ning, Yong ;
Zhang, Zhiyong ;
Zhang, Guo-Jun .
ACS NANO, 2014, 8 (03) :2632-2638
[7]   Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates [J].
Cao, Qing ;
Kim, Hoon-sik ;
Pimparkar, Ninad ;
Kulkarni, Jaydeep P. ;
Wang, Congjun ;
Shim, Moonsub ;
Roy, Kaushik ;
Alam, Muhammad A. ;
Rogers, John A. .
NATURE, 2008, 454 (7203) :495-U4
[8]   An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% [J].
Chen, Chun-Chao ;
Chang, Wei-Hsuan ;
Yoshimura, Ken ;
Ohya, Kenichiro ;
You, Jingbi ;
Gao, Jing ;
Hong, Zirou ;
Yang, Yang .
ADVANCED MATERIALS, 2014, 26 (32) :5670-+
[9]   Inkjet Printing of Single-Walled Carbon Nanotube/RuO2 Nanowire Supercapacitors on Cloth Fabrics and Flexible Substrates [J].
Chen, Pochiang ;
Chen, Haitian ;
Qiu, Jing ;
Zhou, Chongwu .
NANO RESEARCH, 2010, 3 (08) :594-603
[10]  
Coleman J, 2016, 2D MAT, V3